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This is a discuss on the initial value problem for semilinear fractional Schrödinger
integro-differential equation

i
du

dt
+ Au =

t∫
0

f (s,Dα
s u(s)) ds, 0 < t < T, u (0) = 0

in a Hilbert space H with a self-adjoint positive definite operator A. First and second
order of accuracy difference schemes for the approximate solution of differential problem
are presented. Theorems on existence and uniqueness of the bounded solutions of these
semilinear Schrödinger differential and difference problems are established. In practice,
existence and uniqueness theorems for a bounded solution of the initial boundary value
one-dimensional problem with nonlocal condition and multi-dimensional problem with
local condition on the boundary are proved. Numerical results and explanatory illustra-
tions are presented on one and multi-dimensional problems to show the validation of the
theoretical results.
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1. Introduction

In recent years, fractional calculus paves the way for scientists in various fields to
model their nonlinear phenomena more precisely [1]-[5].

[1]. Podlubny I., Fractional Differential Equations, Academic Press, New York,
1999.

[2]. Lavoie, J. L, Osler, T. J., Tremblay, R., Review, Vol. 18 (2), pp. 240-268, 1976.
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[3]. Diethelm, K., The analysis of fractional differential equations, Lecture Notes in
Mathematics, Vol. 2004, Springer-Verlag, Berlin, 2010.

[4]. Ashyralyev, A., Hamad, A., FCAA, Vol.22(2), pp. 302-325, 2019.
[5]. Kiryakova, V., FCAA, Vol.17(4), pp. 977-1000, 2014.

This permits in new application fields for fractional equations: population dynamics,
image processing, acoustics, electromagnetism, signal processing, information sciences,
communications etc.[6]-[9].

[6]. Yan, Y., Ekaka-a, E.N., Journal of Franklin Institute, Vol. 348 (2011) 2744-2758.
[7]. Tarasov, V. E., Journal of Engineering Mechanics, Vol. 143 (5), Article ID:

D4016001, 2017.
[8]. Baleanu, D., Inc, M., Aliyu, A.I., Yusuf, A., Superlattices and Microstructures,

Vol. 111, pp. 546-555, 2017.
[9]. Bhrawy, A. H.; Abdelkawy, M. A., Journal of Computational Physics, Vol. 294,

pp. 462-483, 2015.

However, modelling of real world problems in differential equation forms raise the
necessity for exact or approximate solutions of these differential problems. It is well
known that nonlinear problems are difficult to handle with either analytical or numerical
approaches. Fractional Schrödinger problems appear in different studies with fractional
order derivative in time, space or both directions. Nonlinear versions are also various and
they are studied extensively in many different ways. Nonlinear fractional Schrödinger
problems are studied in many papers including but not limited to [10]-[15].

[10].Yang, Z., International Journal of Computer Mathematics, Vol. 93 (3) pp.609-
626, 2016.

[11]. Secchi, S., Journal of Mathematical Physics, Vol. 54 (3), Article ID: 031501,
2013.

[12]. Guo B., Han Y., Xin J., Applied Mathematics and Computation, Vol. 204 (1),
pp. 468-477, 2008.

[13]. Zhang, J., Zhu, S., Journal of Dynamics and Differential Equations, Vol. 29
(3), pp. 1017-1030, 2017.

[14]. Ardila, A. H., Nonlinear Analysis, Volume 155, Pages 52-64, 2017
[15]. Kirane, M., Nabti, A., Z. Angew. Math. Phys. 66, 2015.

Furthermore, papers on physical properties of fractional Schrödinger equations prove
the strong relation of mathematical improvements and the physical phenomena they refer
[16]-[19].

[16]. Antoine, X., Tang, Q., Zhang, J., International Journal of Computer Mathe-
matics, Vol. 95 (6-7), pp. 1423-1443, 2018.

[17]. Wang, P., Huang, C., Journal of Computational Physics, Vol. 293, pp. 238-251,
2015.

[18]. Ionescu, A. D.; Pusateri, F., Journal of Functional Analysis, Vol. 266 (1), pp.
139-176, 2014.

[19]. Li, D., Wang, J., Zhang, J., SIAM Journal on Scientific Computing, Vol. 39
(6), pp. A3067-A3088, 2017.

However, time fractional nonlinear problems are studied rarely in the literature [20]-
[23].

2



[20]. Garrappa, R., Moret, I., Popolizio, M., Computers and Mathematics with
Applications, Vol. 74(5), pp 977-992, 2017

[21]. Lashkarian, E., Hejazi, S. R., Mathematical Methods in the Applied Sciences,
Vol. 41 (7) pp. 2664-2672, 2018.

[22]. Mohebbi, A., Abbaszadeh, M., Dehghan, M., Engineering Analysis with
Boundary Elements, Vol. 37 (2), pp. 475-485, 2013.

[23]. Shivanian, E., Jafarabadi, A., Numerical Methods for Partial Differential
Equations, Vol. 33 (4), pp. 1043-1069, 2017.

Implemented methods include meshless techniques, matrix functions, finite element
method, Lie group analysis method and so on. However, finite difference schemes are not
investigated well for nonlinear time fractional Schrödinger equations. In the papers on
finite difference methods for linear fractional Schrödinger equations, fractional derivative
appears in space variables [24]-[27].

[24]. Ran, M., Zhang, C., Communications in Nonlinear Science and Numerical
Simulation, Vol. 41, pp. 64-83, 2016.

[25]. Yang, Z., International Journal of Computer Mathematics, Vol. 93 (3), pp.
609-626, 2016.

[26]. Wang, P., Huang, C., Journal of Computational Physics, Vol. 293, pp. 238-251,
2015.

[27]. Wang, D., Xiao, A., Yang, W., Journal of Computational Physics, Vol. 272,
pp. 644-655, 2014.

It is known that classical numerical techniques like finite difference method preserve
their importance due to their well-established theory and useful properties like stability
[28]-[34].

[28]. Han, H., Jin, J., Wu, X., Computers and Mathematics with Applications Vol.
50, 1345-1362, 2005.

[29]. Ashyralyev, A., Sobolevskii, P. E., New Difference Schemes for Partial Differ-
ential Equations, Birkhäuser Verlag, Basel, Boston, Berlin, 2004.

[30]. Ashyralyev, A., Sirma, A., Computers and Mathematics with Applications,
Vol. 55 (3), pp. 392-407, 2008.

[31]. Ashyralyev, A., Hicdurmaz, B., Kybernetes, Vol. 40 (5-6), pp. 736-750, 2011.
[32]. Ashyralyev, A., Hicdurmaz, B., International Journal of Computer Mathemat-

ics, Vol. 89(13-14), pp. 1927-1936, 2012.
[33]. Ashyralyev, A., Boundary Value Problems, Article ID: 31, pp. 1-18, 2013.
[34]. Ashyralyev, A., Emirov, N., Cakir, Z., EJDE, 2014, Article ID: 97.

Multidimensional problems arise in real world problems frequently. Paper [35] is
one of rare studies on high order approximation of a nonlinear two-dimensional fractional
Schrödinger problem.

[35]. Zhao, X., Sun, Z. Z., Hao, Z. P., SIAM Journal on Scientific Computing, Vol.
36 (6), pp. A2865-A2886, 2014.

In recent publications, stability of initial boundary value problems for linear frac-
tional Schrödinger differential equations are studied with different approaches (See [37]-
[39],[BH] and references therein). However, the nonlinearity turns problem (1) into a
challenging one.
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[36]. Yan, Y., Pal, K., Ford, N. J., BIT Numerical Mathematics, Vol. 54 (2), pp.
555-584, 2014.

[37]. Garrappa, R., Moret, I., Popolizio, M., Journal of Computational Physics, Vol.
293, pp. 115-134, 2015.

[38]. Hicdurmaz, B., Ashyralyev, A., Computers & Mathematics with Applications,
Vol. 72(6), pp. 1703-1713, 2016.

[39]. Ashyralyev, A., Hicdurmaz, B., Applied and Computational Mathematics, Vol.
17 (1), pp. 10-21, 2018.

[BH]. Hicdurmaz,H., Initial Boundary Value Problems for Fractional Schrödinger
Differential Equations,PhD Thesis, Gebze Institute of Technology, Turkey, 2015.

In the present paper, we consider a nonlinear time fractional Schrödinger integro-
differential problem

i
du

dt
+ Au =

t∫
0

f (s,Dα
s u(s)) ds, 0 < t < T, 0 < α < 1, u(0) = 0 (1)

in a Hilbert space H with a self-adjoint positive definite operator A. Here

Dα
t = Dα

0+

is the standard Riemann-Liouville’s derivative of order α ∈ (0, 1).
In this paper, problem (1) is investigated with both theoretical and numerical ap-

proaches. Besides first order accurate difference scheme, various second order of accuracy
difference schemes are presented. Since high order algorithms have great advantages in
real world applications, the present paper fills the gap by presenting second order accurate
approximation for n-dimensional nonlinear fractional Schrödinger problems with applying
of operator approach.

2. A fractional Schrödinger integro-differential equation

Let H be a Hilbert space, A be a positive definite self-adjoint operator. Throughout
this paper,

{
eiAt, t ≥ 0

}
is the strongly continuous exponential operator-function. Now

let us give the following estimate that will be used soon:∥∥eiAt∥∥
H→H ≤ 1 . (2)

A function u(t) is called a solution of problem (1) if the following conditions are
satisfied:

(i) u(t) is continuously differentiable and
t∫

0

f (s,Dα
s u(s)) ds ∈ H on the segment [0, T ].

(ii) The element u(t) belongs to D(A) for all t ∈ [0, T ], and the function Au(t) is
continuous on segment [0, T ].

(iii) u(t) satisfies the fractional differential equation and initial condition (1).
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The procedure of proving theorem on the existence and uniqueness of a bounded
solution of problem (1) is based on reducing this problem to an integral equation

u(t) = −
t∫
0

ieiA(t−y)

y∫
0

f (z,Dα
z u(z)) dzdy (3)

in Hα and the use of successive approximations. Here, Hα (0 < α < 1) is the Banach
space consisting of all abstract functions v(t) having a fractional derivative of order α,
defined on [0, T ] with values in H for which the following norm is finite:

‖ v ‖Hα= max
0≤t≤T

‖ Dα
0+v(t) ‖H + max

0≤t≤T
‖v(t)‖H .

Moreover, the Banach space C(α) ([0, T ], H) (0 < α < 1) is the space obtained by comple-
tion of all smooth H-valued functions v(t) on [0, T ] in the norm

‖v‖C(α)([0,T ],H) =‖ v ‖C([0,T ],H) + sup
0≤t<t+τ≤T

∥∥∥∥v(t+ τ)− v(t)

τα

∥∥∥∥
H

.

Here, C ([0, T ], H) stands for the Banach space of continuous functions v(t) defined on
[0, T ] with values in H equipped with the norm

‖ v ‖C([0,T ],H)= max
0≤t≤T

‖v(t)‖H .

We have that

u′(t) = −i
t∫

0

f (z,Dα
z u(z)) dz +

t∫
0

AeiA(t−y)

y∫
0

f (z,Dα
z u(z)) dzdy

= −i
t∫

0

eiA(t−y)f
(
y,Dα

y u(y)
)
dy. (4)

Then

Dα
t u(t) =

1

Γ(1− α)

t∫
0

u′(p)dp

(t− p)α
(5)

= − i

Γ(1− α)

t∫
0

p∫
0

eiA(p−y)f
(
y,Dα

y u(y)
)
dy

dp

(t− p)α
.

The recursive formula for the solution of problem (1) is

Dα
t uj(t) = − i

Γ(1− α)

t∫
0

p∫
0

eiA(p−y)f
(
y,Dα

y uj−1(y)
)
dy

dp

(t− p)α
,

j = 1, 2, ..., (6)

Theorem 2.1. Assume the following hypotheses hold:
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1. The function f : [0, T ]×Hα −→ H is continuous, that is

‖f(t,Dα
t u(t))‖H ≤ M̄, (7)

2. Lipschitz condition holds uniformly with respect to t

‖f(t,Dα
t u)− f(t,Dα

t v)‖H ≤ L‖Dα
t u−Dα

t v‖H . (8)

Here and in future , L, M̄ are positive constants. Then there exists a unique bounded
solution u(t) to problem (1) in Hα.

Proof. According to the method of recursive approximation (6), we get

Dα
t u(t) = Dα

t u0(t) +
∞∑
j=0

(Dα
t uj+1(t)−Dα

t uj(t)) , (9)

where
Dα
t u0(t) = 0.

Applying formula (6) and estimates (2) and (7), we get

‖Dα
t un+1(t)−Dα

t un(t)‖H ≤
LnM̄t(n+1)(2−α)

Γ((n+ 1)(2− α) + 1)

and

‖Dα
t un+1(t)‖H ≤

M̄t(2−α)

Γ(3− α)
+
LM̄t2(2−α)

Γ(5− 2α)
+ · · ·+ LnM̄t(n+1)(2−α)

Γ((n+ 1)(2− α) + 1)

for any n, n ≥ 1. From that and formula (9) it follows that

‖Dα
t u(t)‖H ≤ ‖Dα

t u0(t)‖H +
∞∑
m=0

‖Dα
t um+1(t)−Dα

t um(t)‖H (10)

≤
∞∑
m=0

LmM̄t(n+1)(2−α)

Γ((n+ 1)(2− α) + 1)
<∞, 0 ≤ t ≤ T

which proves the existence of a bounded solution u(t) of problem (1) in Hα. The bound-

edness of du(t)
dt

and Au(t) in C ([0, T ], H) norm follow from equation (1), formula (4), the
triangle inequality and estimates (7), (10). Theorem 2.1 is proved.

Now, we consider the applications of abstract result to one dimensional nonlocal
and a multi dimensional local problems.

First, the mixed problem for semilinear fractional Schrödinger equation

i∂u
∂t
− (a(x)ux(t, x))x + δu(t, x) =

t∫
0

f (s,Dα
s u(s, x)) ds,

0 < t < T, 0 < x < 1,

u(0, x) = 0, x ∈ [0, 1],

u(t, 0) = u(t, 1), ux(t, 0) = ux(t, 1), 0 ≤ t ≤ T

(11)
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is considered. Assume that a(x) ≥ 0 (x ∈ (0, 1)) is the smooth function and a(0) = a(1)
and all compatibility conditions hold.

We introduce the Hilbert space L2[0, 1] of all square integrable functions defined
on [0, 1]. This allows us to reduce mixed problem (11) to initial value problem (1) in a
Hilbert space Hα with a self-adjoint operator Ax generated by problem (11).

Theorem 2.2. Assume the following hypotheses hold:

1 The function f : [0, T ]× C(α) ([0, T ], L2[0, 1]) −→ L2[0, 1] be continuous function, that
is

‖f(t,Dα
t u(t))‖L2[0,1] ≤ M̄ (12)

in [0, T ]× C(α) ([0, T ], L2[0, 1])

2 Lipschitz condition holds uniformly with respect to t

‖f(t,Dα
t u)− f(t,Dα

t v)‖L2[0,1] ≤ L‖Dα
t u−Dα

t v‖L2[0,1]. (13)

Then there exists a unique solution to problem (11) which is bounded in Hα.
The proof of Theorem 2.2 is based on the abstract Theorem 2.1 and symmetry

properties of the operator Ax generated by problem (11).
Second, let Ω be the unit open cube in the m-dimensional Euclidean space Rm : Ω =

{x = (x1, ..., xm) : 0 < xj < 1, 1 ≤ j ≤ m} with boundary S, Ω = Ω ∪S. In [0, T ]×Ω. The
mixed boundary value problem for the multidimensional fractional Schrödinger equation

i∂u
∂t
−

m∑
r=1

(ar(x)uxr)xr + δu(t, x) =
t∫

0

f (s,Dα
s u(s, x)) ds,

0 < t < T, x = (x1, · · ·, xm) ∈ Ω,

u(0, x) = 0, x ∈ Ω,

u(t, x) = 0, x ∈ S

(14)

is considered. Assume that ar(x) (x ∈ Ω) is the smooth function and ar(x) ≥ 0 and all
compatibility conditions hold.

We introduce the Hilbert space L2(Ω) defined on Ω. This allows us to reduce mixed
problem (14) to initial value problem (1) in a Hilbert space Hα with a self-adjoint operator
Ax generated by problem (14).

Theorem 2.3. Assume the following hypotheses:

1 The function f : [0, T ]× C(α)
(
[0, T ], L2(Ω)

)
−→ L2(Ω) be continuous function, that is

‖f(t,Dα
t u(t))‖L2(Ω) ≤ M̄ (15)

in [0, T ]× C(α)
(
[0, T ], L2(Ω)

)
,

2 Lipschitz condition holds uniformly with respect to t

‖f(t,Dα
t u)− f(t,Dα

t v)‖L2(Ω) ≤ L‖Dα
t u−Dα

t v‖L2(Ω). (16)
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Then there exists a unique solution to problem (14) which is bounded in Hα.

The proof of Theorem 2.3 is based on the abstract Theorem 2.1 and the symmetry
properties of the operator Ax generated by problem (14) and the coercivity theorem for
the solution of the elliptic differential problem in L2(Ω).

3. A first order of accuracy difference scheme

For the approximate solution of (1), applying the set of grid points

[0, T ]τ = {tk : tk = kτ, 0 ≤ k ≤ N, Nτ = T} , (17)

we propose the first order of accuracy difference scheme iuk−uk−1

τ
+ Auk = τ

k∑
l=1

f(tl−1, D
1,αul−1),

tl = lτ, 1 ≤ l ≤ k ≤ N, u0 = 0.
(18)

In order to establish existence and uniqueness theorem of difference scheme (18) as
a discrete analogy of Theorem 2.1, we introduce H1,α

τ , H2,α
τ (0 < α < 1) normed space of

all abstract mesh functions vτ = {vk}Nk=0 having a fractional difference derivative of order
α, defined on [0, T ]τ with values in H for which the following norms are finite uniformly
with τ :

‖ vτ ‖H1,α= max
0≤l≤N

‖ D1,αvl ‖H + max
0≤l≤N

‖vl‖H , (19)

‖ vτ ‖H2,α= max
0≤l≤N

‖ D2,αvl ‖H + max
0≤l≤N

‖vl‖H . (20)

Moreover, the Banach space C(α) ([0, T ]τ , H) (0 < α < 1) is the normed space of all
H-valued mesh functions vτ = {vk}Nk=0 on [0, T ]τ with the norm

‖vτ‖C(α)([0,T ]τ ,H) =‖ vτ ‖C([0,T ]τ ,H) + sup
0≤k<k+l≤N

∥∥∥∥vk+l − vk
(lτ)α

∥∥∥∥
H

. (21)

Here, C ([0, T ]τ , H) stands for the Banach space of the mesh functions vτ defined on [0, T ]τ
with values in H,equipped with the norm

‖ vτ ‖C([0,T ]τ ,H)= max
0≤l≤N

‖vl‖H . (22)

In order to establish existence and uniqueness theorems for bounded solution of (18),
this difference scheme is reduced to the following equivalent nonlinear equation

uk = −i
k∑

m=1

Rk−m+1

m∑
l=1

f(tl−1, D
1,αul−1)τ 2, (23)

where
R = (I − iτA)−1. (24)

We have that
uk − uk−1

τ
= −i

k∑
m=1

Rk−m+1

m∑
l=1

f(tl−1, D
1,αul−1)τ
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+i
k−1∑
m=1

Rk−m
m∑
l=1

f(tl−1, D
1,αul−1)τ

= −i
k∑

m=1

Rk−m+1f(tm−1, D
1,αum−1)τ. (25)

Then, we get

D1,α
τ uk =

1

Γ(1− α)

k∑
m=1

Γ(k −m+ 1− α)

(k −m)!

um − um−1

τα

= −i 1

Γ(1− α)

k∑
m=1

Γ(k −m+ 1− α)

(k −m)!

m∑
l=1

Rm−l+1f(tl−1, D
1,αul−1)τ 2−α. (26)

The recursive formula for the solution of difference scheme (18) is

i
u

(j)
k − u

(j)
k−1

τ
+ Au

(j)
k = τ

k∑
l=1

f(tl−1, D
1,αu

(j−1)
l−1 ),

1 ≤ k ≤ N, u
(j)
0 = 0, j = 1, 2, ..., u

(0)
k is given. (27)

From (26) and (27) it follows

D1,α
τ u

(j)
k = −i 1

Γ(1− α)

k∑
m=1

Γ(k −m+ 1− α)

(k −m)!

m∑
l=1

Rm−l+1f(tl−1, D
1,αu

(j−1)
l−1 )τ 2−α,

j = 1, 2, ..., u
(0)
k is given. (28)

Theorem 3.1. Let the assumptions of Theorem 2.1 be satisfied. Then, there exists
a unique solution uτ = {uk}Nk=0 of difference scheme (18) which is bounded in H1,α

τ of
uniformly with respect to τ .

Proof. According to the method of recursive approximation (28), we get

D1,α
τ uk = D1,α

τ u
(0)
k +

∞∑
j=0

(
D1,α
τ u

(j+1)
k −D1,α

τ u
(j)
k

)
, (29)

where
D1,α
τ u

(0)
k = 0.

Applying formula (28), estimates (7) and

‖R‖H→H ≤ 1, (30)

we get

‖Dα
τ u

(n+1)
k −Dα

τ u
(n)
k ‖H ≤ LnM̄

n+1∑
p=0

(
n+ 1
p

)
τ (1−α)(n+1−p) (tk)

p(1−α)+n+1

Γ(p(1− α) + n+ 2)
.

9



and

‖Dα
τ u

(n+1)
k ‖H ≤ M̄

{
τ 1−αtk +

(tk)
2−α

Γ(3− α)

}
+ LM̄

{
τ
t2k

Γ(3)
+ 2τ 1−α (tk)

3−α

Γ(4− α)
+

(tk)
3

Γ(4)

}

+ · · ·+LnM̄
n+1∑
p=0

(
n+ 1
p

)
τ (1−α)(n+1−p) (tk)

p(1−α)+n+1

Γ(p(1− α) + n+ 2)

for any n ≥ 1. From that and formula (29) it follows that

‖Dα
τ uk‖H ≤

∥∥∥Dα
τ u

(0)
k

∥∥∥
H

+
∞∑
m=0

∥∥∥Dα
τ u

(j+1)
k −Dα

τ u
(j)
k

∥∥∥
H

≤ M̄

{
τ 1−αtk +

(tk)
2−α

Γ(3− α)

}
+ LM̄

{
τ
t2k

Γ(3)
+ 2τ 1−α (tk)

3−α

Γ(4− α)
+

(tk)
3

Γ(4)

}

+ · · ·+LnM̄
n+1∑
p=0

(
n+ 1
p

)
τ (1−α)(n+1−p) (tk)

p(1−α)+n+1

Γ(p(1− α) + n+ 2)
+ · · ·, 0 ≤ k ≤ N

which proves the existence of a solution uτ = {uk}Nk=0 of difference scheme (18) which is
bounded in H1,α

τ of uniformly with respect to τ . Theorem 3.1 is proved.
Now, we consider the applications of abstract result to one dimensional nonlocal

and a multi dimensional local problems.
Note that a study of discretization, over time only, of the initial value problem

also permits one to include general difference schemes in applications if the differential
operators A in space variables are replaced by the difference operators Ah that act in the
Hilbert spaces and are uniformly self-adjoint positive defined in h for 0 < h ≤ h0

First, mixed problem (11) for the fractional Schrödinger equation is considered.
The discretization of problem (11) is provided in two steps. To the differential operator
A generated by problem (11), we assign the difference operator Axh by the formula

Axhϕ
h(x) = {−(a(x)ϕx)x,r + δϕr}M−1

1 , (31)

acting in the space of grid functions ϕh(x) = {ϕr}M0 satisfying the conditions ϕ0 =
ϕM , ϕ1 − ϕ0 = ϕM − ϕM−1. With the help of Axh, we arrive at the initial value problem

duh(t,x)
dt

+ Axhu
h(t, x) =

t∫
0

fh(s, x,Dα
s u

h(s, x))ds,

0 < t < T, x ∈ [0, 1]h,

uh(0, x) = 0, x ∈ [0, 1]h.

(32)

In the second step, we replace problem (32) by first order of accuracy difference
scheme (18) 

iuk−uk−1

τ
+ Axhuk =

k∑
l=1

fhl−1(x)τ, x ∈ [0, 1]h,

fhk (x) = f(tk, xn, D
1,α
s uk), tk = kτ, 1 ≤ k ≤ N − 1,

uh0(x) = 0, x ∈ [0, 1]h,

(33)
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Theorem 3.3. Let the assumptions of Theorem 3.1 be satisfied. Then, there exists

a unique solution
{
uhk
}N
k=0

of difference scheme (33) which is bounded in H1,α
τ uniformly

with respect to τ and h.
The proof of Theorems 3.3 is based on the abstract Theorem 3.1 and symmetry

properties of the difference operator Axh defined by formula (31).

Second, initial boundary value problem (14) for the m-dimensional Schrödinger
equation is considered. To the differential operator A generated by problem (14), we
assign the difference operator Axh by the formula

Axhu
h(x) = −

m∑
r=1

(
ar(x)uhxr

)
xr,jr

(34)

acting in the space of grid functions uh(x), satisfying the conditions uh(x) = 0 (∀ x ∈ Sh).
It is known that Axh is a self-adjoint positive definite operator in L2(Ωh). With the help
of Axh, we arrive at the initial value problem

duh(t,x)
dt

+ Axhu
h(t, x) =

t∫
0

fh(s, x,Dα
s u

h(s, x))ds,

0 < t < T, x ∈ Ωh,

uh(0, x) = 0, x ∈ Ωh.

(35)

We replace problem (14) by the following difference scheme

iuk−uk−1

τ
+ Axhuk =

k∑
l=1

fhl−1(x)τ, x ∈ Ωh,

fhk (x) = f(tk, xn, D
1,α
s uk), tk = kτ, 1 ≤ k ≤ N − 1,

uh0(x) = 0, x ∈ Ωh.

(36)

Theorem 3.4. Let the assumptions of Theorem 3.1 be satisfied. Then, there exists

a unique solution
{
uhk
}N
k=0

of difference scheme (36) which is bounded in H1,α
τ uniformly

with respect to τ and h.
The proof of Theorem 3.4 is based on the abstract Theorem 3.1 and symmetry

properties of the difference operator Axh defined by formula (34) and on the theorem on
coercivity inequality for the solution of the elliptic problem in L2h.

4. R-modified Crank-Nicholson difference schemes

For the approximate solution of (1), applying the same set of grid points [0, T ]τ ,we
present the r−modified Crank-Nicholson difference schemes

iuk−uk−1

τ
+ Auk = τ

k∑
l=1

Fl−1 (D2,αul−1) , 1 ≤ k ≤ r,

iuk−uk−1

τ
+ 1

2
Auk + 1

2
Auk−1 = τ

k∑
l=1

Fl−1 (D2,αul−1) ,

tk = kτ, r + 1 ≤ k ≤ N, u0 = 0,

(37)
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where

k∑
l=1

Fl−1

(
D2,αul−1

)
=



1
2

(
f( τ

2
, 1

2
(D2,α

τ u1 +D2,α
τ u0)) + f(0, D2,α

τ u0)
)
, k = 1,

k−1∑
l=1

f(tl, D
2,α
τ ul) + 1

2
f(tk− τ

2
, 1

2
(D2,α

τ uk) +D2,α
τ uk−1))

+1
2
f(0, D2,α

τ u0), 2 ≤ k ≤ N.

(38)

Here, second order of accuracy approximation formula for fractional derivative is defined
by formula [AEC].

D2,α
τ uk =



1

Γ(3− α)21−ατα
(−u0 + u1), k = 1,

32−α

24−αταΓ(4− α)
{(14α− 15)u0 − (α + 33)u1

+(2α + 3)u2} , k = 2,

k−1∑
m=2

{
τ−α

Γ(2− α)
η (k −m) (um−1 − um−2)

+
(um − 2um−1 + um−2)τ−α

Γ(1− α)

(
(k −m+ 1)η (k −m)

(1− α)

)

+
(um − 2um−1 + um−2)τ−α

Γ(1− α)

(
ζ(k −m)

(2− α)

)}

+
τ−α

Γ(2− α)21−α (uk−1 − uk−2)

+
τ−α(3− α)

Γ(3− α)22−α (uk − 2uk−1 + uk−2), 3 ≤ k ≤ N,

(39)

where

η(r) = (r + 1/2)1−α − (r − 1/2)1−α, (40)

ζ(r) = (r − 1/2)2−α − (r + 1/2)2−α. (41)

[AEC]. Ashyralyev, A., Emirov, N., Cakir, Z., EJDE, 2014, Article ID: 97.

In order to establish existence and uniqueness theorem for bounded solution of (37),
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this difference scheme is reduced to the following equivalent nonlinear form

uk =



−i
k∑
j=1

Rk−j+1
j∑
l=1

Fl−1 (D2,αul−1) τ 2, 1 ≤ k ≤ r,

−i
r∑
j=1

Bk−rRr−j+1
j∑
l=1

Fl−1 (D2,αul−1) τ 2

−i
k∑

j=r+1

Bk−jC
j∑
l=1

Fl−1 (D2,αul−1) τ 2, r + 1 ≤ k ≤ N,

(42)

where

C =

(
I − iAτ

2

)−1

, B =

(
I + i

Aτ

2

)
C,R = (I − iAτ)−1 . (43)

For easy computation, let’s see the case when r = 0. We have that

uk = −i
k∑

j=r+1

Bk−jC

j∑
l=1

Fl−1

(
D2,αul−1

)
τ 2

and

uk − uk−1

τ
= −i

k∑
j=r+1

Bk−jC

j∑
l=1

Fl−1

(
D2,αul−1

)
τ

+i
k−1∑
j=r+1

Bk−1−jC

j∑
l=1

Fl−1

(
D2,αul−1

)
τ

= −i
k∑
l=1

Bk−lCFl−1

(
D2,αul−1

)
τ, 1 ≤ k ≤ N. (44)

Then, we get
uk+1 − 2uk + uk−1

τ 2
= −iCF0

(
D2,αu0

)
= −i

k∑
l=2

Bk−lC
(
Fl−1

(
D2,αul−1

)
− Fl−2

(
D2,αul−2

))
, 2 ≤ k ≤ N − 2. (45)

Applying formulas (39), (43) and (45), we get

D2,α
τ u0 = 0, D2,α

τ u1 =
τ 1−α

Γ(3− α)21−α

(
−iCF0

(
D2,αu0

))
,

D2,α
τ u2 = −i 32−ατ 1−α

24−αταΓ(4− α)
C

×

(
(2α + 3)

(
2∑
l=1

B2−lFl−1

(
D2,αul−1

)
τ

)
+ (α− 30)F0

(
D2,αu0

)
τ

)
,

13



D2,α
τ uk =

k−1∑
m=2

{
τ 1−α

Γ(2− α)
η (k −m)

(
−i

m−1∑
l=1

Bm−l−1CFl−1

(
D2,αul−1

)
τ

)

+
−iτ 1−α

Γ(1− α)

(
(k −m+ 1)η (k −m)

1− α
+

(k −m+ 1)ζ (k −m)

2− α

)
C

×

(
m∑
l=2

Bm−l (Fl−1

(
D2,αul−1

)
− Fl−2

(
D2,αul−2

))
τ + F0

(
D2,αu0

))

− iτ 1−α

Γ(2− α)21−αC
k−1∑
l=1

Bk−1−lFl−1

(
D2,αul−1

)
τ

+
−iτ 1−α(3− α)

Γ(3− α)22−α C

×

(
F0

(
D2,αu0

)
+

k−1∑
l=2

Bk−1−l (Fl−1

(
D2,αul−1

)
− Fl−2

(
D2,αul−2

)))
, 3 ≤ k ≤ N (46)

The recursive formula for the solution of difference scheme (37) is

i
u

(j)
k − u

(j)
k−1

τ
+ Au

(j)
k = τ

k∑
l=1

Fl−1

(
D2,αu

(j)
l−1

)
, 1 ≤ k ≤ r,

i
u

(j)
k − u

(j)
k−1

τ
+

1

2
Au

(j)
k +

1

2
Au

(j)
k−1

=
k∑
l=1

Fl−1

(
D2,αu

(j)
l−1

)
τ,

r + 1 ≤ k ≤ N, u
(j)
0 = 0, j = 1, 2, ..., u

(0)
k is given. (47)

From (46) and (47) for r = 0 it follows

D2,α
τ u

(j)
0 = 0, D2,α

τ u
(j)
1 =

τ 1−α

Γ(3− α)21−α

(
−iCF0

(
D2,αu

(j)
0

))
,

D2,α
τ u2 = −i 32−ατ 1−α

24−αταΓ(4− α)
C

×

(
(2α + 3)

(
2∑
l=1

B2−lFl−1

(
D2,αu

(j)
l−1

)
τ

)
+ (α− 30)F0

(
D2,αu

(j)
0

)
τ

)
,

D2,α
τ u

(j)
k =

k−1∑
m=2

{
τ 1−α

Γ(2− α)
η (k −m)

(
−i

m−1∑
l=1

CBm−l−1Fl−1

(
D2,αu

(j)
l−1

)
τ

)

+
−iτ 1−α

Γ(1− α)

(
(k −m+ 1)η (k −m)

1− α
+

(k −m+ 1)ζ (k −m)

2− α

)
C

×

(
m∑
l=2

Bm−l
(
Fl−1

(
D2,αu

(j)
l−1

)
− Fl−2

(
D2,αu

(j)
l−2

))
τ + F0

(
D2,αu

(j)
0

))
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− iτ 1−α

Γ(2− α)21−αC

k−1∑
l=1

Bk−1−lFl−1

(
D2,αu

(j)
l−1

)
τ +
−iτ 1−α(3− α)

Γ(3− α)22−α C

×

(
F0

(
D2,αu

(j)
0

)
+

k−1∑
l=2

Bk−1−l
(
Fl−1

(
D2,αu

(j)
l−1

)
− Fl−2

(
D2,αu

(j)
l−2

)))
, 3 ≤ k ≤ N,

j = 1, 2, ..., u
(0)
k is given.

Theorem 4.1. Let the assumptions of Theorem 2.1 be satisfied. Then, there
exists a unique solution uτ = {uk}Nk=0 of difference scheme (37) which is bounded in H2,α

τ

uniformly with respect to τ .
Note that in a similar manner as section 3, we can construct r-modified Crank-

Nicholson difference schemes for the approximate solutions of problems (11) and (14).
Abstract Theorem 4.1 permit us to establish theorems on the existence of a bounded
solution of these difference schemes uniformly with respect to τ and h.

5. A second order of accuracy implicit difference scheme

For the approximate solution of (1), applying the same set of grid points [0, T ]τ ,we
present an implicit difference scheme of the the second order of accuracy

i
uk − uk−1

τ
+ A

(
I − iτA

2

)
uk

=

(
I − iτA

2

) k∑
l=1

Fl−1

(
D2,αul−1

)
τ, 1 ≤ k ≤ N, u0 = 0, (48)

where
k∑
l=1

Fl−1 (D1,αul−1) , 1 ≤ k ≤ N is defined by formulas (38) and (39).

In order to establish existence and uniqueness theorem for bounded solution of (48),
this difference scheme is reduced to the following equivalent nonlinear equation

uk = −i
k∑

m=1

(
I − iτA

2

)
P k−m+1

m∑
l=1

Fl−1

(
D2,αul−1

)
τ 2,

where P =
(
I − iτA− (τA)2

2

)−1

. We have that

uk − uk−1

τ
= −i

k∑
m=1

(
I − iτA

2

)
P k−m+1

m∑
l=1

Fl−1

(
D2,αul−1

)
τ

+i
k−1∑
m=1

(
I − iτA

2

)
P k−m

m∑
l=1

Fl−1

(
D2,αul−1

)
τ

= −i
k∑
l=1

(
I − iτA

2

)
P k−l+1Fl−1

(
D2,αul−1

)
τ, 1 ≤ k ≤ N. (49)
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Then, we get
uk+1 − 2uk + uk−1

τ 2
= −i

(
I − iτA

2

)
PF0

(
D2,αu0

)
= −i

k∑
l=2

(
I − iτA

2

)
P k−l+1

(
Fl−1

(
D2,αul−1

)
− Fl−2

(
D2,αul−2

))
, 2 ≤ k ≤ N − 2. (50)

Applying formulas (39), (49) and (50), we get

D2,α
τ u0 = 0, D2,α

τ u1 =
τ 1−α

Γ(3− α)21−α

(
−i
(
I − iτA

2

)
PF0

(
D2,αu0

))
,

D2,α
τ u2 = −i 32−ατ 1−α

24−αταΓ(4− α)

(
I − iτA

2

)
P

×

(
(2α + 3)

(
2∑
l=1

P 2−lFl−1

(
D2,αul−1

)
τ

)
+ (α− 30)F0

(
D2,αu0

)
τ

)
,

D2,α
τ uk =

k−1∑
m=2

{
τ 1−α

Γ(2− α)
η (k −m)

(
−i

m−1∑
l=1

(
I − iτA

2

)
Pm−lFl−1

(
D2,αul−1

)
τ

)

+
−iτ 1−α

Γ(1− α)

(
(k −m+ 1)η (k −m)

1− α
+

(k −m+ 1)ζ (k −m)

2− α

)(
I − iτA

2

)
P

×

(
m∑
l=2

Pm−l (Fl−1

(
D2,αul−1

)
− Fl−2

(
D2,αul−2

))
τ + F0

(
D2,αu0

))

− iτ 1−α

Γ(2− α)21−α

(
I − iτA

2

)
P
k−1∑
l=1

P k−1−lFl−1

(
D2,αul−1

)
τ

+
−iτ 1−α(3− α)

Γ(3− α)22−α

(
I − iτA

2

)
P

×

(
F0

(
D2,αu0

)
+

k−1∑
l=2

P k−1−l (Fl−1

(
D2,αul−1

)
− Fl−2

(
D2,αul−2

)))
, 3 ≤ k ≤ N (51)

The recursive formula for the solution of difference scheme (48) is

i
u

(j)
k − u

(j)
k−1

τ
+ A

(
I − iτA

2

)
u

(j)
k

=

(
I − iτA

2

) k∑
l=1

Fl−1

(
D2,αu

(j)
l−1

)
τ,

1 ≤ k ≤ N, u
(j)
0 = 0, j = 1, 2, ..., u

(0)
k is given. (52)

From (51) and (52) it follows

D2,α
τ u

(j)
0 = 0, D2,α

τ u
(j)
1 =

τ 1−α

Γ(3− α)21−α

(
−i
(
I − iτA

2

)
PF0

(
D2,αu

(j)
0

))
,
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D2,α
τ u2 = −i 32−ατ 1−α

24−αταΓ(4− α)

(
I − iτA

2

)
P

×

(
(2α + 3)

(
2∑
l=1

P 2−lFl−1

(
D2,αu

(j)
l−1

)
τ

)
+ (α− 30)F0

(
D2,αu

(j)
0

)
τ

)
,

D2,α
τ u

(j)
k =

k−1∑
m=2

{
τ 1−α

Γ(2− α)
η (k −m)

(
−i

m−1∑
l=1

(
I − iτA

2

)
Pm−lFl−1

(
D2,αu

(j)
l−1

)
τ

)

+
−iτ 1−α

Γ(1− α)

(
(k −m+ 1)η (k −m)

1− α
+

(k −m+ 1)ζ (k −m)

2− α

)(
I − iτA

2

)
P

×

(
m∑
l=2

Pm−l
(
Fl−1

(
D2,αu

(j)
l−1

)
− Fl−2

(
D2,αu

(j)
l−2

))
τ + F0

(
D2,αu

(j)
0

))

− iτ 1−α

Γ(2− α)21−α

(
I − iτA

2

)
P
k−1∑
l=1

P k−1−lFl−1

(
D2,αu

(j)
l−1

)
τ

+
−iτ 1−α(3− α)

Γ(3− α)22−α

(
I − iτA

2

)
P

×

(
F0

(
D2,αu

(j)
0

)
+

k−1∑
l=2

P k−1−l
(
Fl−1

(
D2,αu

(j)
l−1

)
− Fl−2

(
D2,αu

(j)
l−2

)))
, 3 ≤ k ≤ N,

j = 1, 2, ..., u
(0)
k is given. (53)

Theorem 5.1. Let the assumptions of Theorem 2.1 be satisfied. Then, there
exists a unique solution uτ = {uk}Nk=0 of difference scheme (48) which is bounded in H2,α

τ

uniformly with respect to τ .
Note that in a similar manner as section 3, we can construct implicit second order

of accuracy difference scheme for the approximate solutions of problems (11) and (14).
Abstract Theorem 5.1 permit us to establish theorems on the existence of a bounded
solution of these difference schemes uniformly with respect to τ and h.

6. Numerical results

Here, we implement iterated first and second order of accuracy difference schemes
for one and multi-dimensional semilinear fractional Schrödinger problems.

First, we consider the following one-dimensional problem with the exact solution
u = (eit − 1) sinx.

i∂u(t,x)
∂t
− ∂2u(t,x)

∂x2
=

t∫
0

sin (Dα (u(s, x)− (eis − 1) sinx)) ds

− sinx, 0 < x < π, 0 < t < 1,

u(0, x) = 0, 0 < x < π,

u(t, 0) = u(t, π) = 0, 0 < t < 1.

(54)
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Applying difference schemes (18), (37) and (48) for the approximate solution of problem
(54), we get the system of nonlinear equations. To get the solutions of the problem, we
convert the problem into a system of matrices and we use fixed point iteration and a
modified Gauss-elimination method to deal with the matrix equation. Throughout the
experiments, iterations start with ukn = 0 and terminate when the error between each
iteration becomes less than 10−7 in the given norm. The errors of the numerical solutions
are computed by formula

EN
M = max

1≤k≤N,1≤n≤M−1

∣∣u(tk, xn)− ukn
∣∣ , (55)

where u(tk, xn) represents the exact solution and ukn represents the terminated numerical
solution at (tk, xn) and the results are given in following tables.

Table 1: Errors of DS(18),(37) and (48)for α=0.25 when h=0.002π.
Method/N 10 20 40 80
DS (18) 4.80× 10−2 2.42× 10−2 1.22× 10−2 6.14× 10−3

DS (37), r=0 8.59× 10−4 2.08× 10−4 5.26× 10−5 1.54× 10−5

DS (37), r=1 8.36× 10−3 1.90× 10−3 4.37× 10−4 9.94× 10−5

DS (37), r=2 9.99× 10−3 2.53× 10−3 6.32× 10−4 1.56× 10−4

DS (48) 9.21× 10−4 2.31× 10−4 5.76× 10−5 1.43× 10−5

Table 2: Errors of DS (18),(37) and (48) for α=0.50 when h=0.002π.
Method/N 10 20 40 80
DS (18) 6.07× 10−2 3.07× 10−2 1.55× 10−2 7.77× 10−3

DS (37), r=0 9.04× 10−4 2.13× 10−4 5.29× 10−5 1.51× 10−5

DS (37), r=1 1.22×10−2 2.76× 10−3 6.14× 10−4 1.35× 10−4

DS (37), r=2 1.04× 10−2 2.64× 10−3 6.60× 10−4 1.60× 10−4

Table 3: Errors of DS (18),(37) and (48) for α=0.75 when h=0.002π.
Method/N 10 20 40 80
DS (18) 6.10×10−2 3.09×10−2 1.55×10−2 7.79×10−3

DS (37), r=0 9.99×10−4 2.24×10−4 5.45×10−5 1.55×10−5

DS (37), r=1 2.02×10−2 4.89×10−3 1.12×10−3 2.53×10−4

DS (37), r=2 1.11×10−2 2.86×10−3 7.15×10−4 1.73×10−4

As it is seen in Table 1, Table 2 and Table 3 present the errors of difference schemes
(18),(37) and (48) for α = 0.25, α = 0.50 and α = 0.75, respectively. Some numerical
results are given. If N are doubled and M is considered constant as M = 250, the value of
errors decrease by a factor of approximately 1/2 for the first order of accuracy difference
scheme (18) and the value of errors decrease by a factor of approximately 1/4 for the
second order of accuracy difference schemes (37) and (48).
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Second, we consider the following two-dimensional problem with the exact solution
u(t, x, y) = (e2it − 1) sinx sin y.

i∂
αu(t,x,y)
∂t

− ∂2u(t,x,y)
∂x2

− ∂2u(t,x,y)
∂y2

=
t∫
0

sin(Dα (u(s, x, y)− (e2is − 1) sinx sin y))ds

−2 sinx sin y, 0 < x, y < π, 0 < t < 1,

u(0, x, y) = 0, 0 ≤ x, y ≤ π,

u(t, 0, y) = u(t, π, y) = u(t, x, 0) = u(t, x, π) = 0, 0 ≤ t ≤ 1, 0 ≤ x, y ≤ π,

(56)

Applying difference schemes (18), (37) and (48) for the approximate solution of problem

(56), we get the system of nonlinear equations. To get the solutions of the problem, we
convert the problem into a system of matrices and we use fixed point iteration and a
modified Gauss-elimination method to deal with the matrix equation. We get similary
numerical resultsf or α = 0.25, α = 0.50 and α = 0.75, respectively. If N are doubled
and M is considered constant as M = 100, the value of errors decrease by a factor of
approximately 1/2 for the first order of accuracy difference scheme (18) and the value of
errors decrease by a factor of approximately 1/4 for the second order of accuracy difference
schemes (37) and (48).

6. Conclusion and our future plans
1. In this study, the initial value problem (1) for semilinear fractional Schrödinger

integro-differential equation in a Hilbert space with a self-adjoint positive definite
operator.

• The main theorem on the existence and uniqueness of a bounded solution of problem
(1) is established.

• The application of the main theorem to two semilinear fractional Schrödinger type
partial differential equations is considered.

• The first and second order of accuracy stable difference schemes for the solution of
problem (1) are presented.

• The theorem on the existence and uniqueness of a bounded solution uniformly with
respect to time step of these difference schemes are established.

• The application of this theorem to two semilinear fractional Schrödinger type partial
differential equations is considered.

• Numerical results are given for one and two dimensional fractional Schrödinger type
partial differential equations.

Some parts of the present investigation are published in
[AABH] Ashyralyev, A., Hicdurmaz B., Math Meth Appl Sci. (2019), 1-21.
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2. We are interested in studying the uniform two-step difference schemes and asymp-
totic formulas for the solution of initial value perturbation problem

ε2u′′(t) + iu′(t) + Au(t) =
t∫

0

f (s,Dα
s u(s)) ds, t > 0,

u(0) = 0, u′(0) = 0

for a semilinear delay hyperbolic equation in a Hilbert space H with the self adjoint
positive definite operator A and with ε ∈ (0,∞) parameter multiplying the highest order
derivative term.

Earlier time in [AF] the uniform difference schemes and asymptotic formulas for the
solution of initial value perturbation problem for a linear hyperbolic equation in a Hilbert
space with the self adjoint positive definite operator and with ε ∈ (0,∞) parameter
multiplying the highest order derivative term were presented and investigated.

[AF]. A. Ashyralyev and H.O. Fattorini, SIAM J. Math. Anal. 23(1) (1992) 29-54.

3. Investigate the bounded solution of the identification problem for semilinear
fractional Schrödinger integro-differential equation

iu′(t) + Au(t) = p+

t∫
0

f (s,Dα
s u(s)) ds, 0 < t < T, u (0) = 0, u (T ) = ϕ

in a Hilbert space H with the self adjoint positive definite operator A.
[AM]. A. Ashyralyev and M. Urun, A second order of accuracy difference scheme

for Schrödinger equations with an unknown parameter, Filomat 28(5) (2014) 981–993.

4. Investigate the bounded solution of the initial value problem for semilinear frac-
tional Schrödinger integro-differential equation with time delay iu′(t) + Au(t) =

t∫
0

f (s,Dα
s u(s− w)) ds, 0 < t <∞,

u(t) = ϕ(t),−w ≤ t ≤ 0

is considered in a Hilbert space H with a self-adjoint positive definite operator A.
[AA] A. Ashyralyev and D. Agirseven, On the stable difference schemes for the

Schrödinger equation with time delay, Computational Methods in Applied Mathematics
20(1) (2020) 27-38.

5. We are interested in studying the boundedness solution of the initial value prob-
lem for involutory semilinear fractional Schrödinger integro-differential equation

iu′(t) + Au(t) + bAu(−t) =

t∫
0

f (s,Dα
s u(s)) ds,−∞ < t <∞, u (0) = 0.

[AATAAS]A. Ashyralyev, T. A. Hidayat and A. Sarsanbi, On the stability of Schrodinger
type involutory differential equations. In Functional Analysis in Interdisciplinary Appli-
cations of ICAAM 2018. Springer Proceedings in Mathematics Statistics,2020, inpress.
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