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Introduction

We consider{
Dtu = A(t, x,Dx)u + B(t, x,Dx)u + f (t, x), (t, x) ∈ [0, T ]×Rn,
u|t=0 = u0, x ∈ Rn, , (1)

where n ≥ 1, m ≥ 2 and Dt = −i∂t, Dx = −i∂x. We assume that A(t, x,Dx) =(
aij(t, x,Dx)

)m
i,j=1 is an m × m matrix of continuously time dependent pseudo-differential

operators of order 1, i.e., aij ∈ C([0, T ],Ψ1
1,0(Rn))) and that B(t, x,Dx) =

(
bij(t, x,Dx)

)m
i,j=1 is

an m×m matrix of pseudo-differential operators of order 0, i.e., bij ∈ C([0, T ],Ψ0
1,0(Rn)). We

also assume that the matrix A is upper triangular and hyperbolic, i.e.,

A(t, x,Dx) = Λ(t, x,Dx) + N(t, x,Dx)

= diag(λ1(t, x,Dx), λ2(t, x,Dx), . . . , λm(t, x,Dx)) + N(t, x,Dx)

with real eigenvalues λ1(t, x, ξ), λ2(t, x, ξ), . . . , λm(t, x, ξ) of A(t, x, ξ) and

N(t, x,Dx) =


0 a12(t, x,Dx) a13(t, x,Dx) · · · a1m(t, x,Dx)
0 0 a23(t, x,Dx) · · · a2m(t, x,Dx)
... ... ... · · · ...
0 0 0 . . . am−1m(t, x,Dx)
0 0 0 . . . 0

 .

Furthermore, we introduce the following two hypotheses:

(H1) For the coefficients of the lower order term B(t, x,Dx):

the lower order terms bij belong to C([0, T ],Ψj−i) for i > j.

(H2) For some theorems, we assume that A does not depend on t, i.e. A = A(x,Dx) and sat-
isfies: there exists M ∈ N such that if λj(x, ξ) = λk(x, ξ) for some j, k ∈ {1, . . . ,m} and
λj(x, ξ) and λk(x, ξ) are not identically equal near (x, ξ) then there exists some N ≤ M
such that

λj(x, ξ) = λk(x, ξ) ⇒ HN
λj

(λk) := {λj, {λj, . . . , {λj, λk}} . . . }(x, ξ) 6= 0, (H2)

where the Poisson bracket {·, ·} in HN
λj

is iterated N times.

Well-posedness

In Garetto et al. [2018], we prove a well-posedness result for (1) under hypothesis (H1):
Theorem 1. Consider the Cauchy problem (1), where A(t, x,Dx) and B(t, x,Dx) are as de-
scribed in the introduction and B(t, x,Dx) satisfies (H1). If now u0

k ∈ Hs+k−1(Rn) and fk ∈
C([0, T ], Hs+k−1) for k = 1, . . . ,m, then (1) has a unique anisotropic Sobolev solution u, i.e.,
uk ∈ C([0, T ], Hs+k−1) for k = 1, . . . ,m.

This theorem is proved by making use of the triangular form, solving the last equation and
then iteratively building the solution of the system from the solutions to scalar equations.
For each characteristic λj of A, we denote by G0

jθ and Gjg the respective solution solution to{
Dtw = λj(t, x,Dx)w + bjj(t, x,Dx)w,
w(0, x) = θ(x),

and
{
Dtw = λj(t, x,Dx)w + bjj(t, x,Dx)w + g(t, x),
w(0, x) = 0.

The operators G0
j and Gj can be microlocally represented by Fourier integral operators

G0
jθ(t, x) =

∫
eiϕj(t,x,ξ)aj(t, x, ξ)θ̂(ξ)dξ

and

Gjg(t, x) =

t∫
0

∫
eiϕj(t,s,x,ξ)Aj(t, s, x, ξ)ĝ(s, ξ)dξds =

t∫
0

Ej(t, s)g(s, x)ds,

where

Ej(t, s)g(s, x) =

∫
eiϕj(t,s,x,ξ)Aj(s, x, ξ)ĝ(s, ξ)dξ

with ϕj(t, s, x, ξ) solving the eikonal equation{
∂tϕj = λj(t, x,∇xϕj),
ϕj(s, s, x, ξ) = x · ξ, , ϕj(t, x, ξ) := ϕj(t, 0, x, ξ).

The amplitudes Aj,−k(t, s, x, ξ) of order−k, k ∈ N, giving Aj ∼
∑∞
k=0Aj,−k, and they satisfy

the usual transport equations with initial data at t = s, and we have aj(t, x, ξ) = Aj(t, 0, x, ξ).

The components of the solution u of (1) is given by a composition of the operators described
above together with principal part coefficients and lower order coefficients. That is where
hypothesis (H1) comes into play. For example in the case m = 2., we get{

u1 = U0
1 + G1((a12 + b12)u2),

u2 = U0
2 + G2(b21u1),

U0
j = G0

ju
0
j + Gj(fj), j = 1, 2.

That then gives

u1 = Ũ0
1 + G1(a12G2(b21u1)) + G1(b12G2(b21u1))

Ũ0
1 = G0

1u
0
1 + G1(f1) + G1((a12 + b12)U0

2 ).

One then gets to the final result by setting up a fixed point problem to which Banach’s fixed
point theorem can be applied. A general time interval [0, T ] can be iteratively covered since
the estimates involved for theG’s do only depend on the coefficients and not the initial data.

Solution representations and regularity results

In the case of A = A(x,Dx), asking in addition to (H1) on the lower order terms also (H2) for
the principal part, the solutions of (1) can be represented explicitly modulo some smoothing
operators. Here, we state the principal results and refer to Garetto et al. [2020] for the details
and proofs.
Theorem 2. Consider (1) with A = A(x,Dx) and B(t, x,Dx) satisfying properties described above
and let in addition (H1) and (H2) be satisfied. Let u0 and f have components u0

j and fj, respectively,
with u0

j ∈ Hs+j−1(Rn) and fj ∈ C([0, T ], Hs+j−1) for j = 1, . . . ,m. Then, for any N ∈ N, the
components uj, j = 1, . . . ,m, of the solution u are given by

uj(t, x) =

m∑
l=1

(
Hl−jj,l (t) + Rj,l(t)

)
u0
l +
(
Kl−jj,l (t) + Sj,l(t)

)
fl,

where Rj,l, Sj,l ∈ L(Hs, C([0, T ], Hs+N−l+j)) and the operators Hl−jj,l , Kl−jj,l ∈
L(C([0, T ], Hs), C([0, T ], Hs−l+j)) are integrated Fourier Integral Operators of order l − j.

Using the explicit solution representations, we get
Theorem 3. Let p ∈ (1,∞) and α = (n − 1)

∣∣1
p −

1
2

∣∣. Consider (1) under (H1) and (H2). Then,
for any compactly supported u0 ∈ L

p
α ∩ L2

comp, the solution u = u(t, x) of the Cauchy problem (1)
satisfies u(t, ·) ∈ Lploc, for all t ∈ [0, T ]. Moreover, there is a positive constant CT such that

sup
t∈[0,T ]

‖u(t, ·)‖Lploc ≤ CT‖u0‖Lpα.

Local estimates can be obtained in other spaces as well, for s ∈ R and α as above. In detail,
assuming u0 below is compactly supported, we have that u0 ∈ L

p
s+α implies u(t, ·) ∈ Lps; that

u0 ∈ Cs+
n−1
2 implies u(t, ·) ∈ Cs; and, for 1 < p ≤ q ≤ 2, that u0 ∈ L

p

s−1
q+np−

n−1
2

implies

u(t, ·) ∈ Lqs.

Propagation of singularities

Operators of the form (
∏
σGσ(i))

k, which appear in the solution representation above in the

operatorsHl−jj,l , are of the general form

Ql =

t∫
0

t1∫
0

. . .

tl−1∫
0

D(t)H(t) dtl . . . dt1, H(t) = eiλj1t1eiλj2(t2−t1) · . . . · eiλjl(tl−tl−1)e−iλjltl.

For these operators, we have Ql ∈ L(Hs, Hs+N(l)), where N(l) → +∞ as l → +∞. The
singularities propagate along broken Hamiltonian flows.

Let J = {j1, . . . , jl+1}, 1 ≤ jk ≤ m, jk 6= jk+1. From the definition of H(t), we have that its
canonical relation Λt ⊆ T ∗Rn × T ∗Rn is given by

Λt =
{

(x, p, y, ξ) : (x, p) = Ψt(y, ξ)
}
, Ψt = Φt1j1 ◦ · · · ◦ Φ

tl−tl−1
jl

◦ Φ−tljl+1

and the Φtj are the transformations corresponding to a shift by t along the trajectories of the
Hamiltonian flow defined by the λj.

Let ΦJ(t, x, ξ) be the corresponding broken Hamiltonian flow. It means that points follow
bicharacteristics of λj1 until meeting the characteristic of λj2, and then continue along the
bicharacteristic of λj2, etc.

Operators of the type Ql can be rewritten as standard Fourier integral operators where the
domain of integration is not the whole space but a simplex. For those operators, following
arguments of Hörmander, we get WF (Iu) ⊂

⋃
j Λj(WF (u)). For details see Kamotski and

Ruzhansky [2007], Garetto et al. [2020].
Corollary 1. Let n ≥ 1, m ≥ 2, and consider (1) with A = A(x,Dx) under hypotheses (H1) and
(H2). Then, see above, we have an explicit representation of the solution u. Consequently, up to any
Sobolev order (depending on N ), the wave front set of uj is given by

WF (uj(t, ·)) ⊂

 m⋃
l=1

WF (Hl−jj,l (t)u0
l )

⋃ m⋃
l=1

WF (Kl−jj,l (t)fl)

 , (2)

with each of the wave front sets for terms in the right hand side of (2) given by the propagation along
the broken Hamiltonian flow as described above.
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