R-actions and invariant differential operators

Gerardo Mendoza
Temple University

Virtual International Conference on Pseudo-differential Operators
Ghent, July 7, 2020
Overview

A closed manifold \mathcal{M} together with a nowhere vanishing real vector field \mathcal{T} that is a Killing vector field for some Riemannian metric behaves in many ways like a circle bundle over a compact base.
Overview

A closed manifold \(M \) together with a nowhere vanishing real vector field \(\mathcal{T} \) that is a Killing vector field for some Riemannian metric behaves in many ways like a circle bundle over a compact base.

To illustrate the point, I will discuss a theorem concerning the action of such a vector field on the kernel of an invariant differential operator

\[
P : C^\infty(M; E) \to C^\infty(M; E), \quad [\mathcal{L}_\mathcal{T}, P] = 0,
\]

acting on sections of a Hermitian vector bundle,
Overview

A closed manifold M together with a nowhere vanishing real vector field \mathcal{T} that is a Killing vector field for some Riemannian metric behaves in many ways like a circle bundle over a compact base.

To illustrate the point, I will discuss a theorem concerning the action of such a vector field on the kernel of an invariant differential operator

$$P : C^\infty(M; E) \to C^\infty(M; E), \quad [\mathcal{L}_\mathcal{T}, P] = 0, \quad PP^* = P^*P$$

acting on sections of a Hermitian vector bundle, assumed to be normal with respect to the natural Hilbert space structure.

On $\ker P \subset L^2$, $\mathcal{L}_\mathcal{T}$ will act as a Fredholm selfadjoint operator with compact parameter (assuming some sort of ellipticity).

As an application I will discuss how with certain hypoellipticity condition one gets a result resembling Kodaira's vanishing theorem.

At the end I will sketch the basic ideas of the proofs.
Overview

A closed manifold M together with a nowhere vanishing real vector field \mathcal{T} that is a Killing vector field for some Riemannian metric behaves in many ways like a circle bundle over a compact base.

To illustrate the point, I will discuss a theorem concerning the action of such a vector field on the kernel of an invariant differential operator

$$P : C^\infty(M; E) \to C^\infty(M; E), \quad [\mathcal{L}_\mathcal{T}, P] = 0, \quad PP^* = P^*P$$

acting on sections of a Hermitian vector bundle, assumed to be normal with respect to the natural Hilbert space structure. On $\ker P \subset L^2$, $\mathcal{L}_\mathcal{T}$ will act as a Fredholm selfadjoint operator with compact parametrix (assuming some sort of ellipticity).
Overview

A closed manifold M together with a nowhere vanishing real vector field \mathcal{T} that is a Killing vector field for some Riemannian metric behaves in many ways like a circle bundle over a compact base.

To illustrate the point, I will discuss a theorem concerning the action of such a vector field on the kernel of an invariant differential operator

$$P : C^\infty(M; E) \rightarrow C^\infty(M; E), \quad [\mathcal{L}_\mathcal{T}, P] = 0, \quad PP^* = P^*P$$

acting on sections of a Hermitian vector bundle, assumed to be normal with respect to the natural Hilbert space structure. On $\ker P \subset L^2$, $\mathcal{L}_\mathcal{T}$ will act as a Fredholm selfadjoint operator with compact parametrix (assuming some sort of ellipticity).

As an application I will discuss how with certain hypoellipticity condition one gets a result resembling Kodaira’s vanishing theorem.

At the end I will sketch the basic ideas of the proofs.
Set-up

\(M \) is a closed manifold, compact no boundary (and connected)
Set-up

\(M\) is a closed manifold, **compact no boundary (and connected)**

\(\mathcal{T}\) is a nowhere vanishing real vector field preserving some Riemannian metric \(g\)
Set-up

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists.

T is a nowhere vanishing real vector field preserving some Riemannian metric g.

Set-up

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists

T is a nowhere vanishing real vector field preserving some Riemannian metric g

α_t is the flow of T, m is an invariant smooth density
Set-up

\[M \text{ is a closed manifold,} \quad \mathcal{L}_T g = 0. \text{ We only care that such } g \text{ exists} \]

\[T \text{ is a nowhere vanishing real vector field preserving some Riemannian metric } g \]

\[a_t \text{ is the flow of } T, \ m \text{ is an invariant smooth density} \]

\[E \to M \text{ is a Hermitian vector bundle, metric } h \]
Set-up

\(M \) is a closed manifold, \(\mathcal{L}_Tg = 0. \) We only care that such \(g \) exists

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)

\(\alpha_t \) is the flow of \(T \), \(m \) is an invariant smooth density

\(E \to M \) is a Hermitian vector bundle, metric \(h \)

\(\mathcal{U}_t : E \to E \) is a unitary bundle homomorphism covering \(\alpha_t \)
Set-up

\[M \text{ is a closed manifold,} \quad \mathcal{L}_T g = 0. \text{ We only care that such } g \text{ exists} \]

\[T \] is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)

\(a_t \) is the flow of \(T \), \(m \) is an invariant smooth density

\(E \to M \) is a Hermitian vector bundle, metric \(h \)

\(\mathcal{A}_t : E \to E \) is a unitary bundle homomorphism covering \(a_t \)

Lie derivative:

\[
\begin{align*}
E & \xrightarrow{\mathcal{A}_t} E \\
M & \xrightarrow{a_t} M
\end{align*}
\]
Set-up

\(M \) is a closed manifold, \(\mathcal{L}_T g = 0 \). We only care that such \(g \) exists.

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \).

\(a_t \) is the flow of \(T \), \(m \) is an invariant smooth density.

\(E \rightarrow M \) is a Hermitian vector bundle, metric \(h \).

\(\mathcal{A}_t : E \rightarrow E \) is a unitary bundle homomorphism covering \(a_t \).

Lie derivative:

- \(\phi \) section of \(E \), \(p \in M \).
Set-up

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists

T is a nowhere vanishing real vector field preserving some Riemannian metric g

a_t is the flow of T, m is an invariant smooth density

$E \to M$ is a Hermitian vector bundle, metric h

$\mathcal{A}_t : E \to E$ is a unitary bundle homomorphism covering a_t

Lie derivative:

ϕ section of E, $p \in M$. $a_t(p)$

\[E \xrightarrow{\mathcal{A}_t} E \]

\[M \xrightarrow{a_t} M \]
Set-up

\(M \) is a closed manifold, \(\mathcal{L}_T g = 0 \). We only care that such \(g \) exists

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)

\(a_t \) is the flow of \(T \), \(m \) is an invariant smooth density

\(E \to M \) is a Hermitian vector bundle, metric \(h \)

\(\mathcal{A}_t : E \to E \) is a unitary bundle homomorphism covering \(a_t \)

Lie derivative:

\[\phi \text{ section of } E, \ p \in M. \quad \phi(a_t(p)) \]
Set-up

\(M \) is a closed manifold, \(\mathcal{L}_T g = 0 \). We only care that such \(g \) exists

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)

\(a_t \) is the flow of \(T \), \(\mathfrak{m} \) is an invariant smooth density

\(E \to M \) is a Hermitian vector bundle, metric \(h \)

\(\mathcal{A}_t : E \to E \) is a unitary bundle homomorphism covering \(a_t \)

Lie derivative:

\(\phi \) section of \(E \), \(p \in M \)

\(\mathcal{A}_t(\phi(a_t(p))) \)
Set-up

\(M\) is a closed manifold, \(\mathcal{L}_T g = 0\). We only care that such \(g\) exists

\(T\) is a nowhere vanishing real vector field preserving some Riemannian metric \(g\)

\(a_t\) is the flow of \(T\), \(m\) is an invariant smooth density

\(E \rightarrow M\) is a Hermitian vector bundle, metric \(h\)

\(\mathcal{A}_t : E \rightarrow E\) is a unitary bundle homomorphism covering \(a_t\)

Lie derivative:

\[\phi \text{ section of } E, \ p \in M. \ t \mapsto \mathcal{A}_{-t}(\phi(a_t(p))) \text{ is a curve in } E_p. \]
Set-up

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists.

T is a nowhere vanishing real vector field preserving some Riemannian metric g.

a_t is the flow of T, m is an invariant smooth density.

$E \to M$ is a Hermitian vector bundle, metric h.

$\mathcal{U}_t : E \to E$ is a unitary bundle homomorphism covering a_t.

Lie derivative:

ϕ section of E, $p \in M$. $t \mapsto \mathcal{A}_t(\phi(a_t(p)))$ is a curve in E_p, $\frac{d}{dt} \bigg|_{t=0} \mathcal{A}_t(\Phi(a_t(p)))$.
Set-up

\(M\) is a closed manifold, \(\mathcal{L}_T g = 0\). We only care that such \(g\) exists

\(T\) is a nowhere vanishing real vector field preserving some Riemannian metric \(g\)

\(a_t\) is the flow of \(T\), \(m\) is an invariant smooth density

\(E \to M\) is a Hermitian vector bundle, metric \(h\)

\(\mathcal{U}_t : E \to E\) is a unitary bundle homomorphism covering \(a_t\)

Lie derivative:

\[
\phi \text{ section of } E, \ p \in M. \ t \mapsto \mathcal{A}_{-t}(\phi(a_t(p))) \text{ is a curve in } E_p,
\]

\[
\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_{-t}(\Phi(a_t(p))).
\]
Set-up

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists

T is a nowhere vanishing real vector field preserving some Riemannian metric g

a_t is the flow of T, m is an invariant smooth density

$E \to M$ is a Hermitian vector bundle, metric h

$\mathcal{U}_t : E \to E$ is a unitary bundle homomorphism covering a_t

Lie derivative:

ϕ section of E, $p \in M$. $t \mapsto \mathcal{U}_t(\phi(a_t(p)))$ is a curve in E_p,

$\mathcal{L}_T(\phi)(p) = \left. \frac{d}{dt} \right|_{t=0} \mathcal{U}_t(\Phi(a_t(p)))$.

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$, of order m
Set-up

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists.

T is a nowhere vanishing real vector field preserving some Riemannian metric g

a_t is the flow of T, m is an invariant smooth density

$E \to M$ is a Hermitian vector bundle, metric h

$\mathcal{U}_t : E \to E$ is a unitary bundle homomorphism covering a_t

Lie derivative:

\[
\phi \text{ section of } E, \ p \in M. \ t \mapsto \mathcal{U}_{-t}(\phi(a_t(p))) \text{ is a curve in } E_p, \\
\mathcal{L}_T(\phi)(p) = \left. \frac{d}{dt} \right|_{t=0} \mathcal{U}_{-t}(\Phi(a_t(p))).
\]

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask of order m

$[\mathcal{L}_T, P] = 0$, $[P, P^*] = 0$
Set-up

M is a closed manifold, $\mathcal{L}_\mathcal{T} g = 0$. We only care that such g exists.

\mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g.

a_t is the flow of \mathcal{T}, m is an invariant smooth density.

$E \to M$ is a Hermitian vector bundle, metric h

$\mathcal{A}_t : E \to E$ is a unitary bundle homomorphism covering a_t

Lie derivative:

ϕ section of E, $p \in M$. $t \mapsto \mathcal{A}_{-t}(\phi(a_t(p)))$ is a curve in E_p,

$L_\mathcal{T}(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_{-t}(\Phi(a_t(p)))$.

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask of order m

$[\mathcal{L}_\mathcal{T}, P] = 0$, $[P, P^*] = 0$

$\sigma(P) + \sigma(-i\mathcal{L}_\mathcal{T})^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

$E \xrightarrow{\mathcal{A}_t} E$

$M \xrightarrow{a_t} M$
Set-up

\(M \) is a closed manifold, \(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \). \(a_t \) is the flow of \(T \), \(m \) is an invariant smooth density.

\(E \to M \) is a Hermitian vector bundle, metric \(h \). \(\mathcal{A}_t : E \to E \) is a unitary bundle homomorphism covering \(a_t \).

Lie derivative:

\[
\phi \text{ section of } E, \ p \in M. \ t \mapsto \mathcal{A}_t(\phi(a_t(p))) \text{ is a curve in } E_p, \\
\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_t(\Phi(a_t(p))).
\]

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E) \). We ask of order \(m \)

\[
[\mathcal{L}_T, P] = 0, \ [P, P^*] = 0 \\
\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I \text{ is invertible if } \lambda \in \Lambda.
\]
Set-up

M is a closed manifold, $\mathcal{L}_g = 0$. We only care that such g exists.

T is a nowhere vanishing real vector field preserving some Riemannian metric g

a_t is the flow of T, m is an invariant smooth density

$E \to M$ is a Hermitian vector bundle, metric h

$\mathcal{A}_t : E \to E$ is a unitary bundle homomorphism covering a_t

Lie derivative:

- ϕ section of E, $p \in M$. $t \mapsto \mathcal{A}_{-t}(\phi(a_t(p)))$ is a curve in E_p,

 $$\mathcal{L}_T(\phi)(p) = \left. \frac{d}{dt} \right|_{t=0} \mathcal{A}_{-t}(\Phi(a_t(p))).$$

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask of order m

- $[\mathcal{L}_T, P] = 0$, $[P, P^*] = 0$

- $\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

$E \xrightarrow{\mathcal{A}_t} E$

$M \xrightarrow{a_t} M$
\(M \) is a closed manifold, \(\mathcal{L}_T g = 0 \). We only care that such \(g \) exists

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)

\(a_t \) is the flow of \(T \), \(m \) is an invariant smooth density

\(E \to M \) is a Hermitian vector bundle, metric \(h \)

\(\mathfrak{A}_t : E \to E \) is a unitary bundle homomorphism covering \(a_t \)

Lie derivative:

\[
\phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(a_t(p))) \text{ is a curve in } E_p, \\
\mathcal{L}_T(\phi)(p) = \frac{d}{dt} _{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).
\]

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E) \). We ask

of order \(m \)

\[
[\mathcal{L}_T, P] = 0, \ [P, P^*] = 0
\]

(specifically \(P + (-i\mathcal{L}_T)^m \) is elliptic)

\[
\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I \text{ is invertible if } \lambda \in \Lambda.
\]

Let \(\mathscr{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \} \).

\(H = \ker P \cap L^2 \) is a Hilbert space on its own.
Set-up, Theorem

M is a closed manifold,
\mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g
a_t is the flow of \mathcal{T}, \mathfrak{m} is an invariant smooth density
$E \rightarrow M$ is a Hermitian vector bundle, metric h
$\mathcal{A}_t : E \rightarrow E$ is a unitary bundle homomorphism covering a_t

Lie derivative:

\[
\phi \text{ section of } E, \; p \in M. \; t \mapsto \mathcal{A}_{-t}(\phi(a_t(p))) \text{ is a curve in } E_p, \\
\mathcal{L}_\mathcal{T}(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_{-t}(\Phi(a_t(p))).
\]

P is a differential operator $\mathcal{C}^\infty(M; E) \rightarrow \mathcal{C}^\infty(M; E)$. We ask

of order m

$[\mathcal{L}_\mathcal{T}, P] = 0, \; [P, P^*] = 0$

$\sigma(P) + \sigma(-i\mathcal{L}_\mathcal{T})^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_\mathcal{T}\phi \in H \}$.

\[-i\mathcal{L}_\mathcal{T} \big|_{\mathcal{D}} : \mathcal{D} \subset H \rightarrow H\]

$H = \ker P \cap L^2$ is a Hilbert space on its own.
Set-up, Theorem

\(M \) is a closed manifold, \(\mathcal{L}_T g = 0 \). We only care that such \(g \) exists.

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \).
\(a_t \) is the flow of \(T \), \(\mathfrak{m} \) is an invariant smooth density.

\(E \to M \) is a Hermitian vector bundle, metric \(h \).
\(\mathcal{U}_t : E \to E \) is a unitary bundle homomorphism covering \(a_t \).

\(\mathfrak{A}_t : E \to E \) is a unitary bundle homomorphism covering \(a_t \).

\[\mathcal{L}_T (\phi) (p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_{-t} (\Phi (a_t (p))). \]

\(P \) is a differential operator \(C^\infty (M; E) \to C^\infty (M; E) \). We ask of order \(m \)

\[[\mathcal{L}_T, P] = 0, \quad [P, P^*] = 0 \]

so \(P + (-i\mathcal{L}_T)^m \) is elliptic.

\(\sigma (P) + \sigma (-i\mathcal{L}_T)^m - \lambda I \) is invertible if \(\lambda \in \Lambda \).

\(\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \} \).

\[-i\mathcal{L}_T \big|_{\mathcal{D}} : \mathcal{D} \subset H \to H \]
is selfadjoint with compact resolvent, in particular Fredholm.

\[H = \ker P \cap L^2 \] is a Hilbert space on its own.
Circle bundle?

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists.

T is a nowhere vanishing real vector field preserving some Riemannian metric g.

α_t is the flow of T, m is an invariant smooth density.

$E \to M$ is a Hermitian vector bundle, metric h.

$\mathfrak{A}_t : E \to E$ is a unitary bundle homomorphism covering α_t.

Lie derivative:

ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\alpha_t(p)))$ is a curve in E_p,

$$\mathcal{L}_T(\phi)(p) = \left. \frac{d}{dt} \right|_{t=0} \mathfrak{A}_{-t}(\Phi(\alpha_t(p))).$$

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask

$[\mathcal{L}_T, P] = 0$, $[P, P^*] = 0$ (so $P + (-i\mathcal{L}_T)^m$ is elliptic).

$\sigma(P) + \sigma((-i\mathcal{L}_T)^m) - \lambda I$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}$.

$-i\mathcal{L}_T|_\mathcal{D} : \mathcal{D} \subset H \to H$

is selfadjoint with compact resolvent, in particular Fredholm.
Circle bundle?

For \(p \in M \): \(O_p = \) orbit of \(p \), say \(p \sim p' \) iff \(p' \in \overline{O}_p \).

\[M \text{ is a closed manifold, } \mathcal{L}_T g = 0. \text{ We only care that such } g \text{ exists} \]

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)

\(a_t \) is the flow of \(T \), \(m \) is an invariant smooth density

\(E \to M \) is a Hermitian vector bundle, metric \(h \)

\(\mathfrak{A}_t : E \to E \) is a unitary bundle homomorphism covering \(a_t \)

Lie derivative:

\[\phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(a_t(p))) \text{ is a curve in } E_p, \]

\[\mathcal{L}_{T}(\phi)(p) = \left. \frac{d}{dt} \right|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))). \]

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E) \). We ask

\[[\mathcal{L}_{T}, P] = 0, \ [P, P^*] = 0 \]

so \(P + (-i\mathcal{L}_{T})^m \) is elliptic

\(\sigma(P) + \sigma(-i\mathcal{L}_{T})^m - \lambda I \) is invertible if \(\lambda \in \Lambda. \)

Let \(\mathcal{D} = \{ \phi \in H : \mathcal{L}_{T}\phi \in H \}. \)

\[-i\mathcal{L}_{T} |_{\mathcal{D}} : \mathcal{D} \subset H \to H \]

is selfadjoint with compact resolvent, in particular Fredholm.
Circle bundle?

For \(p \in M: \mathcal{O}_p = \text{orbit of } p, \)

say \(p \sim p' \) iff \(p' \in \overline{\mathcal{O}_p}, \)

let \(\phi: M \to B := M/\sim. \)

The fibers of \(\phi \) are tori.

\[M \] is a closed manifold, \(\mathcal{L}_T g = 0. \) We only care that such \(g \) exists

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)

\(\alpha_t \) is the flow of \(T, \) \(m \) is an invariant smooth density \(E \to M \) is a Hermitian vector bundle, metric \(h \)

\(\mathfrak{A}_t: E \to E \) is a unitary bundle homomorphism covering \(\alpha_t \)

Lie derivative:

\(\phi \) section of \(E, \) \(p \in M. \) \(t \mapsto \mathfrak{A}_{-t}(\Phi(\alpha_t(p))) \) is a curve in \(E_p, \)

\[\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathfrak{A}_{-t}(\Phi(\alpha_t(p))). \]

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E). \) We ask

\[[\mathcal{L}_T, P] = 0, [P, P^*] = 0 \]

(\(so \) \(P + (-i\mathcal{L}_T)^m \) is elliptic)

\[\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \]

Let \(\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}. \)

\[-i\mathcal{L}_T |_{\mathcal{D}} : \mathcal{D} \subset H \to H \]

is selfadjoint with compact resolvent, in particular Fredholm.
Circle bundle?

For \(p \in M \): \(O_p = \text{orbit of } p \), say \(p \sim p' \) iff \(p' \in \overline{O}_p \), let \(\varphi : M \to B := M/\sim \). The fibers of \(\varphi \) are tori.

Reason: The closure of \(\alpha_t \) in \(\text{Iso}(M) \) is isomorphic to a torus \(\mathbb{T} \).

\(M \) is a closed manifold, \(\mathcal{L}_T g = 0 \). We only care that such \(g \) exists.

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)
\(\alpha_t \) is the flow of \(T \), \(m \) is an invariant smooth density
\(E \to M \) is a Hermitian vector bundle, metric \(h \)
\(\mathfrak{A}_t : E \to E \) is a unitary bundle homomorphism covering \(\alpha_t \)

Lie derivative:

- \(\phi \) section of \(E \), \(p \in M \). \(t \mapsto \mathfrak{A}_{-t}(\phi(\alpha_t(p))) \) is a curve in \(E_p \),
- \(\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \big|_{t=0} \mathfrak{A}_{-t}(\Phi(\alpha_t(p))) \).

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E) \). We ask of order \(m \)

\([\mathcal{L}_T, P] = 0, \ [P, P^*] = 0 \) (so \(P + (-i\mathcal{L}_T)^m \) is elliptic)
\(\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I \) is invertible if \(\lambda \in \Lambda \).

Let \(\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \} \).
- \(-i\mathcal{L}_T |_\mathcal{D} : \mathcal{D} \subset H \to H \)
is selfadjoint with compact resolvent, in particular Fredholm.
Circle bundle?

For \(p \in M \): \(\mathcal{O}_p = \text{orbit of } p \), say \(p \sim p' \) iff \(p' \in \mathcal{O}_p \), let \(\varphi : M \to B := M/\sim \).

The fibers of \(\varphi \) are tori.

Reason:
The closure of \(\alpha_t \) in \(\text{Iso}(M) \) is isomorphic to a torus \(\mathbb{T} \).

There are open dense sets \(M^{\text{reg}} \subset M, B^{\text{reg}} \subset B \) such that \(\pi : M^{\text{reg}} \to B^{\text{reg}} \) is a principal torus bundle.

\(M \) is a closed manifold, \(\mathcal{L}_T g = 0 \). We only care that such \(g \) exists.

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \).
\(\alpha_t \) is the flow of \(T \), \(m \) is an invariant smooth density.
\(E \to M \) is a Hermitian vector bundle, metric \(h \).
\(\mathcal{A}_t : E \to E \) is a unitary bundle homomorphism covering \(\alpha_t \).

Lie derivative:
\[
\phi \text{ section of } E, \ p \in M. \ t \mapsto \mathcal{A}_{-t}(\phi(\alpha_t(p))) \text{ is a curve in } E_p,
\]
\[
\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_{-t}(\Phi(\alpha_t(p))).
\]

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E) \). We ask \(P \) of order \(m \)
\[[\mathcal{L}_T, P] = 0, [P, P^*] = 0 \]
(\(\text{so } P + (-i\mathcal{L}_T)^m \text{ is elliptic} \))
\[\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \]

Let \(\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \} \).
\[-i\mathcal{L}_T \big| _\mathcal{D} : \mathcal{D} \subset H \to H \]
is selfadjoint with compact resolvent, in particular Fredholm.
Circle bundle?

For \(p \in M \): \(O_p = \) orbit of \(p \), say \(p \sim p' \) iff \(p' \in \overline{O}_p \), let \(\varphi : M \to B := M/\sim \). The fibers of \(\varphi \) are tori.

Reason: The closure of \(\alpha_t \) in \(\text{Iso}(M) \) is isomorphic to a torus \(\mathbb{T} \).

There are open dense sets \(M^{\text{reg}} \subset M \), \(B^{\text{reg}} \subset B \) such that \(\pi : M^{\text{reg}} \to B^{\text{reg}} \) is a principal torus bundle.

Example. Let \(B \) be a compact complex manifold, \(\varphi : M \to B \) the circle bundle of a holomorphic line bundle \(L \to B \),

\[M = \{ \eta \in L : |\eta|^2 = 1 \} \text{ for some Hermitian metric} \]

\[T \text{ is a nowhere vanishing real vector field preserving some Riemannian metric } g \]
\[\alpha_t \text{ is the flow of } T, m \text{ is an invariant smooth density} \]
\[E \to M \text{ is a Hermitian vector bundle, metric } h \]
\[\mathcal{A}_t : E \to E \text{ is a unitary bundle homomorphism covering } \alpha_t \]

Lie derivative:
\[\phi \text{ section of } E, p \in M, t \mapsto \mathcal{A}_{-t}(\phi(\alpha_t(p))) \text{ is a curve in } E_p, \]
\[\mathcal{L}_T(\phi)(p) = \left. \frac{d}{dt} \right|_{t=0} \mathcal{A}_{-t}(\Phi(\alpha_t(p))). \]

\[P \text{ is a differential operator } C^\infty(M;E) \to C^\infty(M;E). \text{ We ask} \]
\[[\mathcal{L}_T, P] = 0, [P, P^*] = 0 \text{ (so } P + (-i\mathcal{L}_T)^m \text{ is elliptic)} \]
\[\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \]

Let \(\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}. \]
\[-i\mathcal{L}_T|_{\mathcal{D}} : \mathcal{D} \subset H \to H \]

is selfadjoint with compact resolvent, in particular Fredholm.
Circle bundle?

For \(p \in M \): \(O_p = \text{orbit of } p \), say \(p \sim p' \) iff \(p' \in \overline{O}_p \).

let \(\varphi : M \to B := M/\sim \).

The fibers of \(\varphi \) are tori.

Reason:
The closure of \(\alpha_t \) in \(\text{Iso}(M) \) is isomorphic to a torus \(\mathbb{T} \).

There are open dense sets
\(M^{\text{reg}} \subset M \), \(B^{\text{reg}} \subset B \)
such that \(\pi : M^{\text{reg}} \to B^{\text{reg}} \) is a principal torus bundle.

Example. Let \(B \) be a compact complex manifold, \(\varphi : M \to B \) the circle bundle of a holomorphic line bundle \(L \to B \), \(T \) the generator of \(t \mapsto e^{it} p \), \(p \in M \),

\(M \) is a closed manifold, \(\mathcal{L}_T g = 0 \). We only care that such \(g \) exists.

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)
\(\alpha_t \) is the flow of \(T \), \(m \) is an invariant smooth density
\(E \to M \) is a Hermitian vector bundle, metric \(h \)
\(\mathcal{A}_t : E \to E \) is a unitary bundle homomorphism covering \(\alpha_t \)

Lie derivative:
\(\phi \) section of \(E \), \(p \in M. t \mapsto \mathcal{A}_{-t}(\phi(\alpha_t(p))) \) is a curve in \(E_p \),
\[
\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_{-t}(\Phi(\alpha_t(p))).
\]

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E). \) We ask
\[
[\mathcal{L}_T, P] = 0, [P, P^*] = 0 \quad \text{(so } P + (-i\mathcal{L}_T)^m \text{ is elliptic)}
\]
\[
\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I \text{ is invertible if } \lambda \in \Lambda.
\]

Let \(\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \} \).

\[
-i\mathcal{L}_T |_{\mathcal{D}} : \mathcal{D} \subset H \to H
\]
is selfadjoint with compact resolvent, in particular Fredholm.

\[
M = \{ \eta \in L : |\eta|^2 = 1 \}
\] for some Hermitian metric
Circle bundle?

For $p \in M$: $\mathcal{O}_p = \text{orbit of } p$, say $p \sim p'$ iff $p' \in \overline{\mathcal{O}_p}$, let $\varphi : M \to B := M/\sim$.

The fibers of φ are tori.

Reason:

The closure of α_t in $\text{Iso}(M)$ is isomorphic to a torus \mathbb{T}.

There are open dense sets $M^{\text{reg}} \subset M$, $B^{\text{reg}} \subset B$ such that $\pi : M^{\text{reg}} \to B^{\text{reg}}$ is a principal torus bundle.

Example. Let B be a compact complex manifold, $\varphi : M \to B$ the circle bundle of a holomorphic line bundle $L \to B$, T the generator of $t \mapsto e^{it}p$, $p \in M$, \mathcal{V} be the CR structure of $M \subset L$,
Circle bundle?

For $p \in M$: $O_p = \text{orbit of } p$, say $p \sim p'$ iff $p' \in \overline{O}_p$.
let $\varphi : M \to B := M/\sim$.

The fibers of φ are tori.

Reason:
The closure of α_t in $\text{Iso}(M)$ is isomorphic to a torus \mathbb{T}.

There are open dense sets $M^{\text{reg}} \subset M$, $B^{\text{reg}} \subset B$ such that $\pi : M^{\text{reg}} \to B^{\text{reg}}$ is a principal torus bundle.

\[M \text{ is a closed manifold, } \mathcal{L}_T g = 0. \text{ We only care that such } g \text{ exists} \]

T is a nowhere vanishing real vector field preserving some Riemannian metric g
\[\alpha_t \text{ is the flow of } T, \text{ is an invariant smooth density} \]
$E \to M$ is a Hermitian vector bundle, metric h
\[\mathcal{A}_t : E \to E \text{ is a unitary bundle homomorphism covering } \alpha_t \]
Lie derivative:
\[\phi \text{ section of } E, p \in M. t \mapsto \mathcal{A}_{-t}(\phi(\alpha_t(p))) \text{ is a curve in } E_p, \]
\[\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_{-t}(\phi(\alpha_t(p))). \]

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask of order m
\[[\mathcal{L}_T, P] = 0, [P, P^*] = 0 \]
\[\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \]

Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}$.
\[-i\mathcal{L}_T|_\varphi : \mathcal{D} \subset H \to H \]
is selfadjoint with compact resolvent, in particular Fredholm.

\[a \text{ hypersurface in the complex manifold } L \]
\[M = \{ \eta \in L : |\eta|^2 = 1 \} \text{ for some Hermitian metric} \]

Example. Let B be a compact complex manifold, $\varphi : M \to B$ the circle bundle
of a holomorphic line bundle $L \to B$, T the generator of $t \mapsto e^{it}p$, $p \in M$,
\mathcal{V} be the CR structure of $M \subset L$, P be the Kohn Laplacian acting on $C^\infty(\Lambda^q \overline{\mathcal{V}}^*)$
$(0, q)$-forms on M.
Circle bundle?

For \(p \in M \): \(\mathcal{O}_p = \) orbit of \(p \), say \(p \sim p' \) iff \(p' \in \overline{\mathcal{O}_p} \).

let \(\varphi : M \to B := M / \sim \).

The fibers of \(\varphi \) are tori.

Reason:
The closure of \(\alpha_t \) in \(\text{Iso}(M) \) is isomorphic to a torus \(\mathbb{T} \).

There are open dense sets \(M^{\text{reg}} \subset M \), \(B^{\text{reg}} \subset B \) such that \(\pi : M^{\text{reg}} \to B^{\text{reg}} \) is a principal torus bundle.

Example. Let \(B \) be a compact complex manifold, \(\varphi : M \to B \) the circle bundle of a holomorphic line bundle \(L \to B \), \(T \) the generator of \(t \mapsto e^{it} p, p \in M \), \(\mathcal{V} \) be the CR structure of \(M \subset L \), \(P \) be the Kohn Laplacian acting on \(C^\infty(\bigwedge^q \overline{\mathcal{V}}^*) \) \((0, q) \)-forms on \(M \)

\[P + (-i \mathcal{L}_T)^2 \text{ is elliptic, } \ker P = \bigoplus_{m \in \mathbb{Z}} \mathcal{E}_m, -i \mathcal{L}_T \varphi = m \varphi. \]
Circle bundle?

For \(p \in M \): \(O_p = \text{orbit of } p \), say \(p \sim p' \) iff \(p' \in \overline{O}_p \),
let \(\varphi : M \rightarrow B := M/\sim \).

The fibers of \(\varphi \) are tori.

Reason:
The closure of \(\alpha_t \) in \(\text{Iso}(M) \) is isomorphic to a torus \(\mathbb{T} \).

There are open dense sets \(M^\text{reg} \subset M, \ B^\text{reg} \subset B \)
such that \(\pi : M^\text{reg} \rightarrow B^\text{reg} \) is a principal torus bundle.

Example. Let \(B \) be a compact complex manifold, \(\varphi : M \rightarrow B \) the circle bundle
of a holomorphic line bundle \(L \rightarrow B \), \(T \) the generator of \(t \mapsto e^{it} p \), \(p \in M \),
\(\mathcal{N} \) be the CR structure of \(M \subset L \), \(P \) be the Kohn Laplacian acting on \(\mathcal{C}^\infty(\wedge^q \mathcal{N}^*) \)
\(P + (-iL_T)^2 \) is elliptic, \(\ker P = \bigoplus_{m \in \mathbb{Z}} \mathcal{E}_m \), \(-iL_T \phi = m \phi \).

(And there is an isomorphism \(\mathcal{E}_{-m} \approx H^{0,q}(M; L^\otimes m) \))
Hypoellipticity

Observe \(\sigma(-iL_T) = \tau I \) for some \(\tau : T^*M \to \mathbb{R} \).

\(M \) is a closed manifold, \(\mathcal{L}_T g = 0 \). We only care that such \(g \) exists.

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \).

\(\alpha_t \) is the flow of \(T \), \(\mathfrak{m} \) is an invariant smooth density.

\(E \to M \) is a Hermitian vector bundle, metric \(h \).

\(\mathfrak{A}_t : E \to E \) is a unitary bundle homomorphism covering \(\alpha_t \).

Lie derivative:

\[\phi \text{ section of } E, \, p \in M. \, t \mapsto \mathfrak{A}_{-t}(\phi(a_t(p))) \text{ is a curve in } E_p, \]

\[\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))). \]

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E) \). We ask of order \(m \)

\[[\mathcal{L}_T, P] = 0, \, [P, P^*] = 0 \] (so \(P + (-iL_T)^m \) is elliptic).

\[\sigma(P) + \sigma(-iL_T)^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \]

Let \(\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}. \)

\[-i\mathcal{L}_T |_{\mathcal{D}} : \mathcal{D} \subset H \to H \]

is selfadjoint with compact resolvent, in particular Fredholm.
Hypoellipticity

Observe $\sigma(-iL_T) = \tau I$ for some $\tau : T^*M \to \mathbb{R}$.

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists.

T is a nowhere vanishing real vector field preserving some Riemannian metric g

α_t is the flow of T, m is an invariant smooth density

$E \to M$ is a Hermitian vector bundle, metric h

$\mathfrak{U}_t : E \to E$ is a unitary bundle homomorphism covering α_t

Lie derivative:

ϕ section of E, $p \in M$. $t \mapsto \mathfrak{U}_t(\phi(\alpha_t(p)))$ is a curve in E_p,

$$\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathfrak{U}_t(\phi(\alpha_t(p))).$$

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask of order m

$[\mathcal{L}_T, P] = 0$, $[P, P^*] = 0$

so $P + (-i\mathcal{L}_T)^m$ is elliptic

$\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{D} = \{\phi \in H : \mathcal{L}_T \phi \in H\}$.

$$-i\mathcal{L}_T|_\mathcal{D} : \mathcal{D} \subset H \to H$$

is selfadjoint with compact resolvent, in particular Fredholm.

$$\lim_{s \to \infty} \frac{1}{s} e^{-isf} \frac{1}{i} \mathcal{L}_T(e^{isf} \phi) = \langle df, T \rangle \phi$$

so $\tau(\xi) = \langle \xi, T \rangle$.
Hypoellipticity

Observe $\sigma(-i\mathcal{L}_T) = \tau I$ for some $\tau : T^* M \to \mathbb{R}$.

Invertibility of $\sigma(P) + \sigma((-i\mathcal{L}_T)^m)$ gives $\tau \neq 0$ on $\text{Char}(P)$:

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists

T is a nowhere vanishing real vector field preserving some Riemannian metric g

a_t is the flow of T, m is an invariant smooth density

$E \to M$ is a Hermitian vector bundle, metric h

$\mathcal{A}_t : E \to E$ is a unitary bundle homomorphism covering a_t

Lie derivative:

ϕ section of E, $p \in M$. $t \mapsto \mathcal{A}_{-t}(\phi(a_t(p)))$ is a curve in E_p,

$\mathcal{L}_T(\phi)(p) = \left. \frac{d}{dt} \right|_{t=0} \mathcal{A}_{-t}(\phi(a_t(p)))$.

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask

$[\mathcal{L}_T, P] = 0$, $[P, P^*] = 0$ (so $P + (-i\mathcal{L}_T)^m$ is elliptic)

$\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}$.

$\left. -i\mathcal{L}_T \right|_{\mathcal{D}} : \mathcal{D} \subset H \to H$

is selfadjoint with compact resolvent, in particular Fredholm.

$$\lim_{s \to \infty} \frac{1}{s} e^{-isf} \frac{1}{i} \mathcal{L}_T (e^{isf} \phi) = \langle df, T \rangle \phi$$

so $\tau(\xi) = \langle \xi, T \rangle$
Hypoellipticity

Observe \(\sigma(-i\mathcal{L}_T) = \tau I \) for some \(\tau : T^*M \to \mathbb{R} \).

Invertibility of

\[\sigma(P) + \sigma((-i\mathcal{L}_T)^m) \]

gives \(\tau \neq 0 \) on \(\text{Char}(P) \):

\[\text{Char}(P) = \text{Char}^+(P) \cup \text{Char}^-(P) \]

according to \(\tau > 0 \) or \(\tau < 0 \)

\(M \) is a closed manifold, \(\mathcal{L}_T g = 0 \). We only care that such \(g \) exists

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)

\(\alpha_t \) is the flow of \(T \), \(m \) is an invariant smooth density

\(E \to M \) is a Hermitian vector bundle, metric \(h \)

\(\mathcal{A}_t : E \to E \) is a unitary bundle homomorphism covering \(\alpha_t \)

Lie derivative:

\(\phi \) section of \(E, p \in M. t \mapsto \mathcal{A}_t(\phi(\alpha_t(p))) \) is a curve in \(E_p, \)

\[\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_t(\Phi(\alpha_t(p))). \]

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E) \). We ask

\[[\mathcal{L}_T, P] = 0, [P, P^*] = 0 \]

so \(P + (-i\mathcal{L}_T)^m \) is elliptic

\[\sigma(P) + \sigma((-i\mathcal{L}_T)^m) - \lambda I \text{ is invertible if } \lambda \in \Lambda. \]

Let \(\mathfrak{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \} \).

\[-i\mathcal{L}_T|_\mathfrak{D} : \mathfrak{D} \subset H \to H \]

is selfadjoint with compact resolvent, in particular Fredholm.

\[\lim_{s \to \infty} \frac{1}{s} e^{-isf} \frac{1}{i} \mathcal{L}_T (e^{isf} \phi) = \langle df, T \rangle \phi \]

so \(\tau(\xi) = \langle \xi, T \rangle \)
Hypoellipticity

Observe $\sigma(-i \mathcal{L}_T) = \tau I$ for some $\tau : T^* M \to \mathbb{R}$.

Invertibility of

$\sigma(P) + \sigma((-i \mathcal{L}_T)^m)$

gives $\tau \neq 0$ on $\text{Char}(P)$:

$\text{Char}(P) = $ $\text{Char}^+(P) \cup \text{Char}^-(P)$

according to $\tau > 0$ or $\tau < 0$

Theorem. If P is hypoelliptic on $\text{Char}^+(P)$ then $-i \mathcal{L}_T \big|_{\mathcal{D}}$ is semibounded from above.

M is a closed manifold,
$\mathcal{L}_T g = 0$. We only care that such g exists

T is a nowhere vanishing real vector field preserving some Riemannian metric g

α_t is the flow of T, m is an invariant smooth density

$E \to M$ is a Hermitian vector bundle, metric h

$\mathfrak{A}_t : E \to E$ is a unitary bundle homomorphism covering α_t

Lie derivative:

ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_t(\phi(\alpha_t(p)))$ is a curve in E_p,

$\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \big|_{t=0} \mathfrak{A}_t(\phi(\alpha_t(p)))$.

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask

$[\mathcal{L}_T, P] = 0$, $[P, P^*] = 0$ (so $P + (-i \mathcal{L}_T)^m$ is elliptic)

$\sigma(P) + \sigma((-i \mathcal{L}_T)^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}$.

$-i \mathcal{L}_T \big|_{\mathcal{D}} : \mathcal{D} \subset H \to H$

is selfadjoint with compact resolvent, in particular Fredholm.
Hypoellipticity

Observe $\sigma(-i\mathcal{L}_T) = \tau I$ for some $\tau : T^*M \to \mathbb{R}$.

Invertibility of

$\sigma(P) + \sigma((-i\mathcal{L}_T)^m)$

gives $\tau \neq 0$ on $\text{Char}(P)$:

$\text{Char}(P) = \text{Char}^+(P) \cup \text{Char}^-(P)$

according to $\tau > 0$ or $\tau < 0$

Theorem. If P is hypoelliptic on $\text{Char}^+(P)$ then $-i\mathcal{L}_T$ is semibounded from above.

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists

T is a nowhere vanishing real vector field preserving some Riemannian metric g

α_t is the flow of T, m is an invariant smooth density

$E \to M$ is a Hermitian vector bundle, metric h

$\mathcal{A}_t : E \to E$ is a unitary bundle homomorphism covering α_t

Lie derivative:

ϕ section of E, $p \in M$. $t \mapsto \mathcal{A}_t(\phi(\alpha_t(p)))$ is a curve in E_p,

$$\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_t(\Phi(\alpha_t(p))).$$

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask

$[\mathcal{L}_T, P] = 0$, $[P, P^*] = 0$ (so $P + (-i\mathcal{L}_T)^m$ is elliptic)

$\sigma(P) + \sigma((-i\mathcal{L}_T)^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}$.

$$-i\mathcal{L}_T|_\mathcal{D} : \mathcal{D} \subset H \to H$$

is selfadjoint with compact resolvent, in particular Fredholm.

(At most finitely many positive elements in spectrum.)
Hypoellipticity

Observe $\sigma(-i\mathcal{L}_T) = \tau I$ for some $\tau : T^* M \to \mathbb{R}$.

Invertibility of

$\sigma(P) + \sigma((-i\mathcal{L}_T)^m)$

gives $\tau \neq 0$ on $\text{Char}(P)$:

$\text{Char}(P) = \text{Char}^+(P) \cup \text{Char}^-(P)$

according to $\tau > 0$ or $\tau < 0$

Theorem. If P is hypoelliptic on $\text{Char}^+(P)$ then $-i\mathcal{L}_T$ above. If M carries an invariant Levi non-degenerate CR structure then the Kohn Laplacians are hypoelliptic in degree $q \neq q^\pm$.

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists

T is a nowhere vanishing real vector field preserving some Riemannian metric g

α_t is the flow of T, m is an invariant smooth density $E \to M$ is a Hermitian vector bundle, metric h

$\mathcal{A}_t : E \to E$ is a unitary bundle homomorphism covering α_t

Lie derivative:

ϕ section of E, $p \in M$. $t \mapsto \mathcal{A}_{-t}(\phi(\alpha_t(p)))$ is a curve in E_p,

$\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_{-t}(\phi(\alpha_t(p))).$

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask

$[\mathcal{L}_T, P] = 0$, $[P, P^*] = 0$

(so $P + (-i\mathcal{L}_T)^m$ is elliptic)

$\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}$.

$-i\mathcal{L}_T \big|_{\mathcal{D}} : \mathcal{D} \subset H \to H$

is selfadjoint with compact resolvent, in particular Fredholm.

is semibounded from

(At most finitely many positive elements in spectrum.)

$q^\pm = \#\text{pos/neg Levi eigenvalues}.}$
Hypoellipticity

Observe $\sigma(-i\mathcal{L}_T) = \tau I$ for some $\tau : T^*M \to \mathbb{R}$.

Invertibility of

$\sigma(P) + \sigma((-i\mathcal{L}_T)^m)$

gives $\tau \neq 0$ on $\text{Char}(P)$:

$$\text{Char}(P) = \text{Char}^+(P) \cup \text{Char}^-(P)$$

according to $\tau > 0$ or $\tau < 0$

Theorem. If P is hypoelliptic on $\text{Char}^+(P)$ then $-i\mathcal{L}_T$ above. If M carries an invariant Levi non-degenerate CR structure then the Kohn Laplacians are hypoelliptic in degree $q \neq q^\pm$.

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists T is a nowhere vanishing real vector field preserving some Riemannian metric g

α_t is the flow of T, m is an invariant smooth density $E \to M$ is a Hermitian vector bundle, metric h

$\mathcal{U}_t : E \to E$ is a unitary bundle homomorphism covering α_t

Lie derivative:

ϕ section of E, $p \in M$, $t \mapsto \mathcal{U}_{-t}(\phi(\alpha_t(p)))$ is a curve in E_p,

$$\mathcal{L}_T(\phi)(p) = \left. \frac{d}{dt} \right|_{t=0} \mathcal{U}_{-t}(\Phi(\alpha_t(p))).$$

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask of order m

$$[\mathcal{L}_T, P] = 0, [P, P^*] = 0 \quad \text{(so $P + (-i\mathcal{L}_T)^m$ is elliptic)}$$

$\sigma(P) + \sigma((-i\mathcal{L}_T)^m - \lambda I)$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{D} = \{\phi \in H : \mathcal{L}_T \phi \in H\}$.

$-i\mathcal{L}_T|_\mathcal{D} : \mathcal{D} \subset H \to H$

is selfadjoint with compact resolvent, in particular Fredholm.

\mathcal{D} is semibounded from (At most finitely many positive elements in spectrum.)

$q^\pm = \# \text{pos/neg Levi eigenvalues.}$

by work of Boutet de Monvel & Sjöstrand, '70s
Hypoellipticity

Observe $\sigma(-i\mathcal{L}_T) = \tau I$ for some $\tau : T^*M \to \mathbb{R}$.

Invertibility of

$\sigma(P) + \sigma((-i\mathcal{L}_T)^m)$

gives $\tau \neq 0$ on $\text{Char}(P)$:

$\text{Char}(P) =$

$\text{Char}^+(P) \cup \text{Char}^-(P)$

according to $\tau > 0$ or $\tau < 0$

Theorem. If P is hypoelliptic on $\text{Char}^+(P)$ then $-i\mathcal{L}_T$ above. If M carries an invariant Levi non-degenerate CR structure then the Kohn Laplacians are hypoelliptic in degree $q \neq q^\pm$. So finite spectrum in these degrees

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists

T is a nowhere vanishing real vector field preserving some Riemannian metric g

α_t is the flow of T, m is an invariant smooth density

$E \to M$ is a Hermitian vector bundle, metric h

$\mathcal{A}_t : E \to E$ is a unitary bundle homomorphism covering α_t

Lie derivative:

ϕ section of E, $p \in M$. $t \mapsto \mathcal{A}_{-t}(\phi(\alpha_t(p)))$ is a curve in E_p,

$\mathcal{L}_T(\phi)(p) = \left. \frac{d}{dt} \right|_{t=0} \mathcal{A}_{-t}(\Phi(\alpha_t(p)))$.

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask

$[\mathcal{L}_T, P] = 0$, $[P, P^*] = 0$ (so $P + (-i\mathcal{L}_T)^m$ is elliptic)

$\sigma(P) + \sigma((-i\mathcal{L}_T)^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}$.

$-i\mathcal{L}_T|_{\mathcal{D}} : \mathcal{D} \subset H \to H$

is selfadjoint with compact resolvent, in particular Fredholm.
Hypoellipticity

Observe $\sigma(-i\mathcal{L}_T) = \tau I$ for some $\tau : T^*M \to \mathbb{R}$.

Invertibility of
$$\sigma(P) + \sigma((-i\mathcal{L}_T)^m)$$
gives $\tau \neq 0$ on $\text{Char}(P)$:
$$\text{Char}(P) = \text{Char}^+(P) \cup \text{Char}^-(P)$$
according to $\tau > 0$ or $\tau < 0$

Theorem. If P is hypoelliptic on $\text{Char}^+(P)$ then $-i\mathcal{L}_T$ above. If M carries an invariant Levi non-degenerate CR structure then the Kohn Laplacians are hypoelliptic in degree $q \neq q^\pm$. So finite spectrum in these degrees

Example. Let B be a compact complex manifold, $\varphi : M \to B$ the circle bundle of a holomorphic line bundle $L \to B$, T the generator of $t \mapsto e^{it}p, p \in M$, \mathcal{V} be the CR structure of $M \subset L$, P be the Kohn Laplacian acting on $C^\infty(\Lambda^q\mathcal{V}^*)$ ($0,q$)-forms on M

$$P + (-i\mathcal{L}_T)^2$$
is elliptic, $\ker P = \bigoplus_{m \in \mathbb{Z}} \mathcal{E}_m, -i\mathcal{L}_T\phi = m\phi$.

(And there is an isomorphism $\mathcal{E}_{-m} \approx H^{0,q}(M;L^{-m}))$
Proofs

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists

T is a nowhere vanishing real vector field preserving some Riemannian metric g

α_t is the flow of T, m is an invariant smooth density

$E \to M$ is a Hermitian vector bundle, metric h

$\mathfrak{A}_t : E \to E$ is a unitary bundle homomorphism covering α_t

Lie derivative:

For a section of E, $p \in M$, $t \mapsto \mathfrak{A}_t^{-1}(\phi(\alpha_t(p)))$ is a curve in E_p,

$\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathfrak{A}_t^{-1}(\Phi(\alpha_t(p))).$

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask

$[\mathcal{L}_T, P] = 0$, $[P, P^*] = 0$

(then $P + (-i\mathcal{L}_T)^m$ is elliptic)

$\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I$ is invertible if $\lambda \in \Lambda$

Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}$.

$-i\mathcal{L}_T |_\mathcal{D} : \mathcal{D} \subset H \to H$

is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose Q is a T-invariant parametrix for $P + (-i\mathcal{L}_T)^m$.

Proofs

M is a closed manifold, \(\mathcal{L} g = 0 \). We only care that such \(g \) exists

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)
\(\alpha_t \) is the flow of \(T \), \(m \) is an invariant smooth density
\(E \rightarrow M \) is a Hermitian vector bundle, metric \(h \)
\(\mathfrak{A}_t : E \rightarrow E \) is a unitary bundle homomorphism covering \(\alpha_t \)
Lie derivative:

\[\phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(\alpha_t(p))) \text{ is a curve in } E_p, \]
\[\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathfrak{A}_{-t}(\phi(\alpha_t(p))). \]

\(P \) is a differential operator \(C^\infty(M; E) \rightarrow C^\infty(M; E) \). We ask
of order \(m \)
\[[\mathcal{L}_T, P] = 0, \ [P, P^*] = 0 \]
(\(\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I \) is invertible if \(\lambda \in \Lambda \).

Let \(\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \} \).
\[-i\mathcal{L}_T \big|_\mathcal{D} : \mathcal{D} \subset H \rightarrow H \]
is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose \(Q \) is a \(T \)-invariant parametrix for \(P + (-i\mathcal{L}_T)^m \). Then
\[\phi - R \phi = Q(P + (-i\mathcal{L}_T)^m) \phi \]
Proofs

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists.

T is a nowhere vanishing real vector field preserving some Riemannian metric g

α_t is the flow of T, m is an invariant smooth density

$E \to M$ is a Hermitian vector bundle, metric h

$\pi_t : E \to E$ is a unitary bundle homomorphism covering α_t

Lie derivative:

ϕ section of E, $p \in M$. $t \mapsto \pi_t(\phi(\alpha_t(p)))$ is a curve in E_p,

$$\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \pi_t(\phi(\alpha_t(p))).$$

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask of order m

$[\mathcal{L}_T, P] = 0$, $[P, P^*] = 0$ (so $P + (-i\mathcal{L}_T)^m$ is elliptic)

$\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}$.

$$-i\mathcal{L}_T|_{\mathcal{D}} : \mathcal{D} \subset H \to H$$

is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose Q is a T-invariant parametrix for $P + (-i\mathcal{L}_T)^m$. Then

$$\phi - R\phi = Q(P + (-i\mathcal{L}_T)^m)\phi = Q(-i\mathcal{L}_T)^m \phi$$

if $P\phi = 0$.
Proofs

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists

T is a nowhere vanishing real vector field preserving some Riemannian metric g

α_t is the flow of T, m is an invariant smooth density

$E \to M$ is a Hermitian vector bundle, metric h

$\mathcal{A}_t : E \to E$ is a unitary bundle homomorphism covering α_t

Lie derivative:

ϕ section of E, $p \in M$. $t \mapsto \mathcal{A}_t^{-1}(\phi(\alpha_t(p)))$ is a curve in E_p,

$$\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \big|_{t=0} \mathcal{A}_t^{-1}(\Phi(\alpha_t(p))).$$

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask

$[\mathcal{L}_T, P] = 0$, $[P, P^*] = 0$

$\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}$.

$$-i\mathcal{L}_T|_\mathcal{D} : \mathcal{D} \subset H \to H$$

is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose Q is a T-invariant parametrix for $P + (-i\mathcal{L}_T)^m$. Then

$$\phi - R\phi = Q(P + (-i\mathcal{L}_T)^m)\phi = Q(-i\mathcal{L}_T)^m\phi = [Q(-i\mathcal{L}_T)^{m-1}][-i\mathcal{L}_T]\phi$$

if $P\phi = 0$
Proofs

\(M \) is a closed manifold, \(\mathcal{L}_T g = 0 \). We only care that such \(g \) exists.

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)

\(\alpha_t \) is the flow of \(T \), \(m \) is an invariant smooth density

\(E \to M \) is a Hermitian vector bundle, metric \(h \)

\(\mathfrak{A}_t : E \to E \) is a unitary bundle homomorphism covering \(\alpha_t \)

Lie derivative:

\(\phi \) section of \(E \), \(p \in M \). \(t \mapsto \mathfrak{A}_{-t} (\phi(\alpha_t(p))) \) is a curve in \(E_p \),

\[\mathcal{L}_T(\phi)(p) = \left. \frac{d}{dt} \right|_{t=0} \mathfrak{A}_{-t}(\Phi(\alpha_t(p))). \]

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E) \). We ask

of order \(m \)

\[[\mathcal{L}_T, P] = 0, [P, P^*] = 0 \] (so \(P + (-i\mathcal{L}_T)^m \) is elliptic)

\[\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \]

Let \(\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \} \).

\[-i\mathcal{L}_T \big|_\mathcal{D} : \mathcal{D} \subset H \to H \]

is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose \(Q \) is a \(T \)-invariant parametrix for \(P + (-i\mathcal{L}_T)^m \). Then

\[\phi - R\phi = Q(P + (-i\mathcal{L}_T)^m)\phi = Q(-i\mathcal{L}_T)^m\phi = [Q(-i\mathcal{L}_T)^{m-1}](-i\mathcal{L}_T)\phi \]

if \(P\phi = 0 \)

parametrix, compact
Proofs

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists.

T is a nowhere vanishing real vector field preserving some Riemannian metric g

α_t is the flow of T, m is an invariant smooth density

$E \to M$ is a Hermitian vector bundle, metric h

$\mathcal{A}_t : E \to E$ is a unitary bundle homomorphism covering α_t

Lie derivative:

\[\phi \text{ section of } E, \ p \in M. \ t \mapsto \mathcal{A}_{-t}(\phi(\alpha_t(p))) \text{ is a curve in } E_p, \]

\[\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_{-t}(\Phi(\alpha_t(p))). \]

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask

$[\mathcal{L}_T, P] = 0$, $[P, P^*] = 0$

$\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{D} = \{\phi \in H : \mathcal{L}_T \phi \in H\}$.

$-i\mathcal{L}_T |_{\mathcal{D}} : \mathcal{D} \subset H \to H$

is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose Q is a T-invariant parametrix for $P + (-i\mathcal{L}_T)^m$. Then

\[\phi - R\phi = Q(P + (-i\mathcal{L}_T)^m)\phi = Q(-i\mathcal{L}_T)^m\phi = [Q(-i\mathcal{L}_T)^{m-1}](-i\mathcal{L}_T)\phi \]

if $P\phi = 0$

Symmetry:

\[d(h(\phi, \psi) T|_m) \int_M d(h(\phi, \psi) T|_m) = 0 \]
Proofs

\(M \) is a closed manifold, \(\mathcal{L}_T g = 0 \). We only care that such \(g \) exists.

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)

\(\alpha_t \) is the flow of \(T \), \(m \) is an invariant smooth density

\(E \to M \) is a Hermitian vector bundle, metric \(h \)

\(\mathcal{A}_t : E \to E \) is a unitary bundle homomorphism covering \(\alpha_t \)

Lie derivative:

- \(\phi \) section of \(E \), \(p \in M \). \(t \mapsto \mathcal{A}_{-t}(\phi(\alpha_t(p))) \) is a curve in \(E_p \),

\[\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_{-t}(\Phi(\alpha_t(p))). \]

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E) \). We ask

\[[\mathcal{L}_T, P] = 0, \quad [P, P^*] = 0 \] (so \(P + (-i \mathcal{L}_T)^m \) is elliptic)

\[\sigma(P) + \sigma(-i \mathcal{L}_T)^m - \lambda \mathbb{I} \text{ is invertible if } \lambda \in \Lambda. \]

Let \(\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \} \).

\[-i \mathcal{L}_T \big|_{\mathcal{D}} : \mathcal{D} \subset H \to H \]

is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose \(Q \) is a \(T \)-invariant parametrix for \(P + (-i \mathcal{L}_T)^m \). Then

\[\phi - R\phi = Q(P + (-i \mathcal{L}_T)^m)\phi = Q(-i \mathcal{L}_T)^m\phi = [Q(-i \mathcal{L}_T)^{m-1}](-i \mathcal{L}_T)\phi \]

if \(P\phi = 0 \)

Symmetry:

\[\mathcal{L}_T(h(\phi, \psi) m) = d(h(\phi, \psi)T|m) \int_M d(h(\phi, \psi)T|m) = 0 \]
Problems

Problems
M is a closed manifold, \(L_T g = 0 \). We only care that such \(g \) exists.

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \).

\(\alpha_t \) is the flow of \(T \), \(m \) is an invariant smooth density

\(E \to M \) is a Hermitian vector bundle, metric \(h \)

\(\mathfrak{U}_t : E \to E \) is a unitary bundle homomorphism covering \(\alpha_t \)

Lie derivative:

\[
\phi \text{ section of } E, \ p \in M, \ t \mapsto \mathfrak{U}_{-t}(\phi(\alpha_t(p))) \text{ is a curve in } E_p,
\]

\[
\mathcal{L}_T(\phi)(p) = \left. \frac{d}{dt} \right|_{t=0} \mathfrak{U}_{-t}(\phi(\alpha_t(p))).
\]

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E) \). We ask of order \(m \)

\[
[L_T, P] = 0, \ [P, P^*] = 0 \quad \text{(so } P + (-iL_T)^m \text{ is elliptic)}
\]

\[\sigma(P) + \sigma(-iL_T)^m - \lambda I \text{ is invertible if } \lambda \in \Lambda.\]

Let \(\mathcal{D} = \{ \phi \in H : L_T \phi \in H \} \)

\[
-iL_T|_{\mathcal{D}} : \mathcal{D} \subset H \to H
\]

is selfadjoint with compact resolvent, in particular Fredholm.

Proofs

Parametrix:

Suppose \(Q \) is a \(T \)-invariant parametrix for \(P + (-iL_T)^m \). Then

\[
\phi - R\phi = Q(P + (-iL_T)^m)\phi = Q(-iL_T)^m\phi = \left[Q(-iL_T)^{m-1} \right](-iL_T)\phi
\]

if \(P\phi = 0 \)

Symmetry:

\[
(h(L_T\phi, \psi) + h(\phi, L_T\psi)) m = L_T(h(\phi, \psi)m) = d(h(\phi, \psi)T|m)m
\]

Selfadjointness uses \(\sigma(P) + \sigma((-iL_T)^m) - \lambda I \) invertible for large \(\lambda \) (\(\Lambda \) is a ray of minimal growth) and formal normality of \(P \).
Proofs, details in (1)
M is a closed manifold, \(\mathcal{L}_T g = 0 \). We only care that such \(g \) exists.

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)

\(a_t \) is the flow of \(T \), \(m \) is an invariant smooth density

\(E \to M \) is a Hermitian vector bundle, metric \(h \)

\(\mathfrak{A}_t : E \to E \) is a unitary bundle homomorphism covering \(a_t \)

Lie derivative:

\[
\phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(a_t(p))) \text{ is a curve in } E_p, \\
\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).
\]

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E) \). We ask of order \(m \)

\[
[\mathcal{L}_T, P] = 0, \ [P, P^*] = 0 \quad (\text{so } P + (-i\mathcal{L}_T)^m \text{ is elliptic})
\]

\(\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \)

Let \(\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \} \).

\[
-i\mathcal{L}_T \big|_{\mathcal{D}} : \mathcal{D} \subset H \to H
\]

is selfadjoint with compact resolvent, in particular Fredholm.
Finiteness of Spectrum

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists.

T is a nowhere vanishing real vector field preserving some Riemannian metric g

α_t is the flow of T, m is an invariant smooth density

$E \to M$ is a Hermitian vector bundle, metric h

$\mathcal{A}_t : E \to E$ is a unitary bundle homomorphism covering α_t

Lie derivative:

- ϕ section of E, $p \in M$, $t \mapsto \mathcal{A}_{-t}(\phi(\alpha_t(p)))$ is a curve in E_p,
- $\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_{-t}(\phi(\alpha_t(p)))$.

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask

- $[\mathcal{L}_T, P] = 0$, $[P, P^*] = 0$ (so $P + (-i\mathcal{L}_T)^m$ is elliptic)
- $\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}$.

- $-i\mathcal{L}_T|_\mathcal{D} : \mathcal{D} \subset H \to H$

is selfadjoint with compact resolvent, in particular Fredholm.

Suppose P is hypoelliptic on $\tau > 0$ but there there is $\{ \tau_k \}_{k=1}^\infty$, $\{ \phi_k \}_{k=0}^\infty$

- $-i\mathcal{L}_T \phi_k = \tau_k \phi_k$, $\| \phi_k \| = 1$ (and $P \phi_k = 0$).
Finiteness of Spectrum

- M is a closed manifold,
- T is a nowhere vanishing real vector field preserving some Riemannian metric g
- a_t is the flow of T, m is an invariant smooth density
- $E \to M$ is a Hermitian vector bundle, metric h
- $\mathfrak{A}_t : E \to E$ is a unitary bundle homomorphism covering a_t
- Lie derivative:
 - ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(a_t(p)))$ is a curve in E_p,
 - $\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p)))$.

- P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask of order m
 - $[\mathcal{L}_T, P] = 0$, $[P, P^*] = 0$ (so $P + (-i\mathcal{L}_T)^m$ is elliptic)
 - $\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}$.

- $-i\mathcal{L}_T \bigg|_{\mathcal{D}} : \mathcal{D} \subset H \to H$
- is selfadjoint with compact resolvent, in particular Fredholm.

Suppose P is hypoelliptic on $\tau > 0$ but there there is $\{ T_k \}_{k=1}^\infty, \{ \phi_k \}_{k=0}^\infty$

- $-i\mathcal{L}_T \phi_k = T_k \phi_k$, $\| \phi_k \| = 1$ (and $P \phi_k = 0$).

Then $\phi = \sum \phi_k$ is a distribution such that $P \phi = 0$.
Finiteness of Spectrum

\[M \text{ is a closed manifold,} \quad \mathcal{L}_T g = 0. \text{ We only care that such } g \text{ exists} \]

\[T \text{ is a nowhere vanishing real vector field preserving some Riemannian metric } g \]

\[a_t \text{ is the flow of } T, \text{ m is an invariant smooth density} \]

\[E \rightarrow M \text{ is a Hermitian vector bundle, metric } h \]

\[\mathcal{A}_t : E \rightarrow E \text{ is a unitary bundle homomorphism covering } a_t \]

\[\text{Lie derivative:} \]

\[\phi \text{ section of } E, \quad p \in M. \quad t \mapsto \mathcal{A}_t(\phi(a_t(p))) \text{ is a curve in } E_p, \]

\[\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_t(\phi(a_t(p))). \]

\[P \text{ is a differential operator } C^\infty(M; E) \rightarrow C^\infty(M; E). \text{ We ask} \]

\[[\mathcal{L}_T, P] = 0, \quad [P, P^*] = 0 \quad \text{(so } P + (-i\mathcal{L}_T)^m \text{ is elliptic)} \]

\[\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \]

\[\text{Let } \mathcal{D} = \{\phi \in H : \mathcal{L}_T \phi \in H\}. \]

\[-i\mathcal{L}_T \big|_{\mathcal{D}} : \mathcal{D} \subset H \rightarrow H \]

\[\text{is selfadjoint with compact resolvent, in particular Fredholm.} \]

Suppose \(P \) is hypoelliptic on \(\tau > 0 \) but there there is \(\{\tau_k\}_{k=1}^\infty, \{\phi_k\}_{k=0}^\infty \)

\[-i\mathcal{L}_T \phi_k = \tau_k \phi_k, \quad ||\phi_k|| = 1 \quad \text{(and } P\phi_k = 0). \]

Then \(\phi = \sum \phi_k \) is a distribution such that \(P\phi = 0. \)

Let \(p_0 \in M, S \) a piece of a hypersurface through \(p \) transversal to \(T \).
Finiteness of Spectrum

\[M \text{ is a closed manifold, } \quad L_T g = 0. \text{ We only care that such } g \text{ exists} \]

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)

\(\alpha_t \) is the flow of \(T \), \(m \) is an invariant smooth density

\(E \to M \) is a Hermitian vector bundle, metric \(h \)

\(\mathcal{A}_t : E \to E \) is a unitary bundle homomorphism covering \(\alpha_t \)

Lie derivative:

\(\phi \) section of \(E, \ p \in M. \ t \mapsto \mathcal{A}_{-t}(\phi(\alpha_t(p))) \) is a curve in \(E_p \),

\[L_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_{-t}(\Phi(\alpha_t(p))). \]

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E) \). We ask of order \(m \)

\[[L_T, P] = 0, \quad [P, P^*] = 0 \] (so \(P + (-iL_T)^m \) is elliptic)

\(\sigma(P) + \sigma(-iL_T)^m - \lambda I \) is invertible if \(\lambda \in \Lambda \).

Let \(\mathcal{D} = \{ \phi \in H : L_T \phi \in H \} \).

\[-iL_T|_{\mathcal{D}} : \mathcal{D} \subset H \to H \]

is selfadjoint with compact resolvent, in particular Fredholm.

Suppose \(P \) is hypoelliptic on \(\tau > 0 \) but there there is \(\{ \tau_k \}_{k=1}^\infty, \{ \phi_k \}_{k=0}^\infty \)

\[-iL_T \phi_k = \tau_k \phi_k, \quad \| \phi_k \| = 1 \] (and \(P \phi_k = 0 \)).

Then \(\phi = \sum \phi_k \) is a distribution such that \(P \phi = 0 \).

Let \(p_0 \in M, S \) a piece of a hypersurface through \(p \) transversal to \(T \). If \(p \in S \), then

\[\mathcal{A}_{-t}(\alpha_t(p)) = e^{i\tau_k t} \phi(p). \]
Suppose P is hypoelliptic on $\tau > 0$ but there there is $\{\tau_k\}_{k=1}^{\infty}, \{\phi_k\}_{k=0}^{\infty}$

$$-i\mathcal{L}_T \phi_k = \tau_k \phi_k, \quad \|\phi_k\| = 1 \quad \text{(and } P\phi_k = 0).$$

Then $\phi = \sum \phi_k$ is a distribution such that $P\phi = 0$.

Let $p_0 \in M$, S a piece of a hypersurface through p transversal to \mathcal{T}. If $p \in S$, then

$$\mathcal{U}_{-t}\phi(a_t(p)) = e^{i\tau_k t} \phi(p).$$

If $\chi \in C^\infty$ has small support near p_0, then

$$(\chi(a_t(p))\phi)\tau = \sum_k \hat{\chi}(\tau - \tau_k)\phi_k(p)$$
M is a closed manifold, \(\mathcal{L}_T g = 0 \). We only care that such \(g \) exists.

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \)
\(\alpha_t \) is the flow of \(T \), \(m \) is an invariant smooth density
\(E \to M \) is a Hermitian vector bundle, metric \(h \)
\(\mathcal{U}_t : E \to E \) is a unitary bundle homomorphism covering \(\alpha_t \)

Lie derivative:

\[\phi \text{ section of } E, p \in M. t \mapsto \mathcal{U}_{-t}(\phi(\alpha_t(p))) \text{ is a curve in } E_p, \]

\[
\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{U}_{-t}(\Phi(\alpha_t(p))).
\]

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E) \). We ask of order \(m \)

\[
[\mathcal{L}_T, P] = 0, [P, P^*] = 0 \quad \text{(so } P + (-i\lambda_T)^m \text{ is elliptic)}
\]

\[
\sigma(P) + \sigma(-i\lambda_T)^m - \lambda I \text{ is invertible if } \lambda \in \Lambda.
\]

Let \(\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \} \).

\[
-i\mathcal{L}_T |_{\mathcal{D}} : \mathcal{D} \subset H \to H
\]

is selfadjoint with compact resolvent, in particular Fredholm.

Suppose \(P \) is hypoelliptic on \(\tau > 0 \) but there there is \(\{ \tau_k \}_{k=1}^\infty \), \(\{ \phi_k \}_{k=0}^\infty \)

\[
-i\mathcal{L}_T \phi_k = \tau_k \phi_k, \quad \| \phi_k \| = 1 \quad \text{(and } P \phi_k = 0).\]

Then \(\phi = \sum \phi_k \) is a distribution such that \(P \phi = 0 \).

Let \(p_0 \in M \), \(S \) a piece of a hypersurface through \(p \) transversal to \(T \). If \(p \in S \), then

\[\mathcal{U}_{-t}(\alpha_t(p)) = e^{i\tau_k t} \phi(p). \]

If \(\chi \in C^\infty \) has small support near \(p_0 \), then

\[
(\chi(\alpha_t(p))\phi)\tau \quad = \quad \sum_k \hat{\chi}(\tau - \tau_k) \phi_k(p)
\]
M is a closed manifold, \(\mathcal{L}_T g = 0 \). We only care that such \(g \) exists.

\(T \) is a nowhere vanishing real vector field preserving some Riemannian metric \(g \), \(\alpha_t \) is the flow of \(T \), \(m \) is an invariant smooth density \(E \to M \) is a Hermitian vector bundle, metric \(h \), \(\mathcal{A}_t : E \to E \) is a unitary bundle homomorphism covering \(\alpha_t \). Lie derivative:

1. \(\phi \) section of \(E, p \in M. t \mapsto \mathcal{A}_t^{-1}(\phi(\alpha_t(p))) \) is a curve in \(E_p, \)
2. \(\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathcal{A}_t^{-1}(\phi(\alpha_t(p))). \)

\(P \) is a differential operator \(C^\infty(M; E) \to C^\infty(M; E). \) We ask

- \([\mathcal{L}_T, P] = 0, [P, P^*] = 0 \) (so \(P + (-i\mathcal{L}_T)^m \) is elliptic)
- \(\sigma(P) + \sigma((-i\mathcal{L}_T)^m - \lambda I) \) is invertible if \(\lambda \in \Lambda. \)

Let \(\mathcal{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}. \)

\[-i\mathcal{L}_T \bigg|_\mathcal{D} : \mathcal{D} \subset H \to H \]
is selfadjoint with compact resolvent, in particular Fredholm.

Suppose \(P \) is hypoelliptic on \(\tau > 0 \) but there there is \(\{ \tau_k \}_{k=1}^\infty \), \(\{ \phi_k \}_{k=0}^\infty \)

\[-i\mathcal{L}_T \phi_k = \tau_k \phi_k, \quad ||\phi_k|| = 1 \quad \text{(and } P \phi_k = 0). \]

Then \(\phi = \sum \phi_k \) is a distribution such that \(P \phi = 0. \)

Let \(p_0 \in M, S \) a piece of a hypersurface through \(p \) transversal to \(T \). If \(p \in S \), then \(\mathcal{A}_t^{-1}(\phi(\alpha_t(p)) = e^{i\tau_k t} \phi(p). \)

If \(\chi \in C^\infty \) has small support near \(p_0 \), then

\[(\chi(\alpha_t(p)) \phi)(\tau) = \sum_k \hat{\chi}(\tau - \tau_k) \phi_k(p)\]

Hypoellipticity implies this is rapidly decreasing a \(\tau \to \infty. \)
Suppose P is hypoelliptic on $\tau > 0$ but there there is $\{\tau_k\}_{k=1}^\infty, \{\phi_k\}_{k=0}^\infty$

$$-i\mathcal{L}_T \phi_k = \tau_k \phi_k, \quad \|\phi_k\| = 1 \quad \text{(and $P\phi_k = 0$)}.$$

Then $\phi = \sum \phi_k$ is a distribution such that $P\phi = 0$.

Let $p_0 \in M$, S a piece of a hypersurface through p transversal to \mathcal{T}. If $p \in S$, then $\mathcal{U}_{-t}(a_t(p)) = e^{i\tau_k t} \phi(p)$. If $\chi \in C^\infty$ has small support near p_0, then

$$(\chi(a_t(p))\phi)(\tau) = \sum_k \hat{\chi}(\tau - \tau_k) \phi_k(p)$$

Hypoellipticity implies this is rapidly decreasing a $\tau \to \infty$. Conclude ϕ_k arbitrarily small near p_0 for large k, then arbitrarily small (large k) on M by compactness.
Thank you