Explicit representations of solutions for linear fractional differential equations with variable coefficients

Joel E. Restrepo¹, Michael Ruzhansky²,³ and Durvudkhan Suragan¹

Department of Mathematics, Nazarbayev University, (Nur-Sultan-Kazakhstan)¹
Department of Mathematics: Analysis, Logic and Discrete mathematics, and Ghent Analysis & PDE Center (Ghent-Belgium)²
School of Mathematical Sciences, Queen Mary University of London, (London-UK)³

Abstract

Explicit solutions of differential equations of complex fractional orders with continuous variable coefficients are established in [3]. The representations of solutions are given in terms of some convergent infinite series of fractional integro-differential operators, which can be widely and efficiently used for analytic and computational purposes.

In the case of constant coefficients, the solution is given by the multivariate Mittag-Leffler function and the obtained result extends the Luchko-Gorenflo representation formula [2, Theorem 4.1] to a general class of linear fractional differential equations with variable coefficients, to complex fractional derivatives, and to fractional derivatives with respect to a given function.

One of the many open problems in fractional calculus is to present explicit solutions of fractional differential equations (FDEs) with variable coefficients, to complex fractional orders with continuous variable coefficients. We follow some ideas from [4] and [1]. A particular case of the obtained result gives the Luchko-Gorenflo representation formula [2, Theorem 4.1].

Description

One of the many open problems in fractional calculus is to present explicit solutions of fractional differential equations (FDEs) with variable coefficients. Existence and uniqueness results for these type problems can be found in the literature. However, in general, explicit representations of solutions have been an essential gap in such problems. A few papers have been published in this direction in the last fifty years.

A modified method of successive approximations is used to establish a unique analytic solution of general FDEs of complex fractional orders with continuous variable coefficients. We follow some ideas from [4] and [1]. A particular case of the obtained result gives the Luchko-Gorenflo representation formula [2, Theorem 4.1].

Modified fractional derivative with respect to another function $\mathcal{C} D_{0+}^{\alpha, \phi} f(t)$

Let $\alpha \in \mathbb{C}$ with Re(α) > 0. Let $D_{0+}^{\alpha, \phi} f(t)$ be the left-sided Riemann-Liouville fractional derivative of a function f with respect to another function ϕ ([4]). Then

$$\mathcal{C} D_{0+}^{\alpha, \phi} f(t) = D_{0+}^{\alpha} \left(f(t) - \sum_{j=0}^{n-1} \frac{\phi^{(j)}(0)}{j!} (\phi(t) - \phi(0))^j \right)$$

where $n = \lceil -\text{Re}(\alpha) \rceil$ for $\alpha \notin \mathbb{N}$, $n = \alpha$ for $\alpha \in \mathbb{N}$ and

$$\frac{\phi^{(j)}(t)}{j!} = \left(\frac{1}{\phi'(t)} \right)^{j} f(t).$$

Fractional differential equations

We consider the following fractional differential equation with continuous variable coefficients (FDEC):

$$\mathcal{C} D_{0+}^{\alpha, \phi} x(t) + \sum_{k=1}^{m} d_k(t) \mathcal{C} D_{0+}^{\alpha, \phi} x(t) = h(t), \quad t \in [0, T],$$

under the initial conditions

$$\left(\frac{1}{\phi'(t)} \right)^{k} x(t) \big|_{t=0} = 0, \quad k = 0, 1, \ldots, n_0 - 1,$$

where $\beta_k \in \mathbb{C}$, Re(β_k) > 0, $i = 0, 1, \ldots, m - 1$, Re(β_i) > Re(β_{i+1}) > \ldots > Re(β_m) > 0 (if Re(β_m) = 0, then we assume Im(β_m) = 0 as well) and n_i are non-negative integers satisfying $n_i - 1 < \text{Re}(\beta_i) \leq n_i$, $n_i = [\text{Re}(\beta_i) + 1]$ (or $n_i = -\lfloor -\text{Re}(\beta_i) \rfloor$), $i = 0, 1, \ldots, m$.

Theorem

Let $h, d_k \in C([0, T], i = 1, \ldots, m$. Then the initial value problem FDEC has a unique solution $x \in C^{n_0-1, \beta_0}([0, T])$ and it is given by the formula

$$x(t) = \sum_{k=0}^{+\infty} \binom{-1}{k} I_{t}^{\alpha, \phi} \left(\sum_{i=1}^{m} d_i(t) I_{t}^{\alpha, \beta_i, \phi} \right)^k h(t),$$

whenever $\sum_{i=1}^{m} \|d_i\|_{C^{n_i-1, \beta_i}} I_{t}^{\alpha, \beta_i, \phi} e^{\alpha t} \leq C e^{\alpha t}$ for some $\nu > 0$, where the constant $0 < C < 1$ does not depend on t. In the case of constant coefficients $d_i(t) = \lambda_i \in \mathbb{C}$ ($i = 1, \ldots, m$) we have:

$$x(t) = \int_{0}^{t} \phi'(s)(\phi(t) - \phi(s))^\alpha \times E_{\beta_0, \ldots, \beta_m}(\lambda_1(\phi(t) - \phi(s))^\alpha, \ldots, \lambda_m(\phi(t) - \phi(s))^\alpha) h(s)ds,$$

where $E_{\lambda_1, \ldots, \lambda_m}(z_1, \ldots, z_n)$ is the multivariate Mittag-Leffler function [2, Page 12].

Remark

The solution of the considered fractional differential equation under the following more general initial conditions

$$\left(\frac{1}{\phi'(t)} \right)^{k} x(t) \big|_{t=0} = c_k \in \mathbb{R}, \quad k = 0, 1, \ldots, n_0 - 1,$$

follows by the latter theorem and the superposition principle. Several results can be established by the consideration of different possible cases of the complex orders.

References

The first and third authors were supported by the Nazarbayev University Program 090101CRP2120. The second author was supported by the FWO Oyendes 1 grant G.09418N: Analytic and Partial Differential Equations and by the EPSRC Grant EP/R003025/1.