Abstract

We consider two physical models, the fractional wave equation [1] with a mass term and the fractional Schrödinger equation [2] with a potential. In both equations the coefficients depend on the spatial variables and are assumed to be singular. Delta like or even higher-order singularities are allowed. By using regularising techniques, we introduce a family of ‘weakened’ solutions, calling them very weak solutions [3]. The existence, uniqueness and consistency results are proved in an appropriate sense. Numerical experiments are done. The appearance of a wall effect for the singular masses of the strength of δ^2 is observed for the wave equation and particles accumulating effect for the Schrödinger equation.

Equations

For $s > 0$ and $(t, x) \in (0, T) \times \mathbb{R}^d$, we consider the Cauchy problems

\[
\begin{aligned}
\left\{
\begin{array}{l}
u_t(t,x)+(\Delta)^s \nu(t,x)+m(t,x)\nu(t,x)=0, \\
u(0,x)=f(x), \\
u(0,x)=g(x),
\end{array}
\right.
\end{aligned}
\]

and

\[
\begin{aligned}
u_t(t,x)+(\Delta)^s \nu(t,x)+p(x)\nu(t,x)=0, \\
u(0,x)=h(x),
\end{aligned}
\]

for the fractional wave equation (FWE) and the fractional Schrödinger equation (FSE), respectively.

Objectives

- To prove the very weak well posedness of the Cauchy problems (FWE) and (FSE).
- To prove the consistency with classical theory.
- To study numerically the behaviour of very weak solutions to (FWE) and (FSE) near the singularities of the coefficients.

Fundamental Lemmas

We make use of the following notation:

\[
\|u(t)\|_{L^2} = \|u(t)\|_{L^2}\text{ and }\|\delta \partial_t u(t)\|_{L^2}.
\]

When the coefficients are regular enough, we have

Lemma 1. Let $s > 0$. Suppose that $m \in L^\infty(\mathbb{R}^d)$ and $m \geq 0$ and that $f \in H^s(\mathbb{R}^d)$ and $g \in L^2(\mathbb{R}^d)$. Then, there is a unique solution $u \in C([0,T], H^s(\mathbb{R}^d)) \cap C^1([0,T], L^2(\mathbb{R}^d))$ to (FWE), and it satisfies

\[
\|\delta \partial_t u(t)\|_{L^2} \leq (1 + m(t,x)) \|f\|_{L^2} + \|g\|_{L^2}.
\]

Lemma 2. Let $s > 0$. Suppose that $p \in L^\infty(\mathbb{R}^d)$ is non-negative and assume that $\epsilon \in H^s(\mathbb{R}^d)$. Then the estimates

\[
\|u(t)\|_{H^s(\mathbb{R}^d)} \leq (1 + |p|_{L^\infty(\mathbb{R}^d)}) \|\epsilon\|_{H^s(\mathbb{R}^d)},
\]

for all $t \in [0, T]$, and C^l-moderate. hold for the unique solution $u \in C([0,T], H^s) \cap C^1([0,T], L^2(\mathbb{R}^d))$ to the Cauchy problems (FSE).

Definitions/Assumptions

We regularise the coefficients in FWE and FSE by convolution with a suitable mollifier ψ and obtain

\[
m_\epsilon(x) = m + \epsilon^2 \psi(x),
\]

\[
p_\epsilon(x) = p \ast \psi(x)
\]

and

\[
h_\epsilon(x) = h \ast \psi(x), \quad \psi \in \mathcal{D}(\mathbb{R}^d).
\]

The function ψ is a Friedricts-mollifier.

Definition 1. (Moderatness) A net of functions $(f_\epsilon)_\epsilon$ is said to be C^l-moderate, if there exist $N \in \mathbb{N}$ and $\epsilon > 0$ such that

\[
\|f_\epsilon\|_{S^N} \leq \epsilon^{N},
\]

where the function space S^N is either $L^\infty(\mathbb{R}^d)$ or $H^s(\mathbb{R}^d)$.

Theorem 1. Let $s > 0$ and assume (A1) and (A2) to be satisfied. Then the Cauchy problems (FWE) and (FSE) have unique very weak solutions of order s.

Numerical experiments

Figure 1: We analyse the behaviour of the solution to FWE for different masses. When $m(\cdot) = \varphi(\cdot) - 30$, i.e. $m(\cdot) = \varphi(\cdot) - 30$, we observe the appearance of a wall effect.

Figure 2: We analyse the behaviour of the solution to FSE for a δ^2-like potential for different times. We observe a particles accumulating effect.

References

Very weak solutions vs Strong singularities

A. Altybay, M. Ruzhansky, M. Sebih and N. Tokmagambetov

Ghent University

Ghent Analysis and PDE Center

Definitions of Assumptions

Assumptions. We assume that:

(A1) m and p are non-negative.

(A2) (m_ϵ) and (p_ϵ) are L^∞-moderate and that (h_ϵ) is H^s-moderate.

Definition 2. (Very weak solution) Let $(f, g) \in H^s(\mathbb{R}^d) \times L^2(\mathbb{R}^d)$. Then the net $(u_\epsilon) \in C([0,T], H^s(\mathbb{R}^d)) \cap C^1([0,T], L^2(\mathbb{R}^d))$ is a very weak solution of order s to the Cauchy problem (FWE) if there exists an L^∞-moderate regularisation (m_ϵ) of the coefficients m such that (u_ϵ) solves the regularised problem

\[
\begin{aligned}
\partial_t u_\epsilon(t,x) + \Delta^s u_\epsilon(t,x) + m_\epsilon(t,x)u_\epsilon(t,x) = 0,
\quad u_\epsilon(0,x) = f(x),
\quad u_\epsilon(0,x) = g(x),
\end{aligned}
\]

for all $\epsilon \in (0, 1)$, and is C^l-moderate.

Consistency

We prove that the V.W. solutions to (FWE) and (FSE) recapture the classical ones when they exist.

Theorem 2. Let $s > 0$. Let $(m, f, g) \in L^\infty(\mathbb{R}^d) \times H^s(\mathbb{R}^d) \times L^2(\mathbb{R}^d)$ and $(p, h) \in L^\infty(\mathbb{R}^d) \times H^s(\mathbb{R}^d)$. Let (u_ϵ) and (v_ϵ) be very weak solutions of (FWE) and (FSE) respectively. Then for any regularising families of coefficients and the Cauchy data in (FWE) and (FSE), the nets (u_ϵ) and (v_ϵ) converge in L^2 as $\epsilon \to 0$ to the unique classical solutions of the Cauchy problems (FWE) and (FSE) respectively.

Very weak well posedness

The uniqueness is proved in the following sense.

Definition 3. We say that the Cauchy problem (FWE) has a unique very weak solution, if for all nets of regularisations (m_ϵ) and (\tilde{m}_ϵ), of m, satisfying $\|m_\epsilon - \tilde{m}_\epsilon\|_{L^\infty} \leq C_N \epsilon^N$ for all $k > 0$, it follows that

\[
\|u_\epsilon(t) - \tilde{u}_\epsilon(t)\|_{L^2} \leq C_N \epsilon^N
\]

for all $N > 0$ and $t \in (0, T]$, where (u_ϵ) and (\tilde{u}_ϵ) are the families of solutions corresponding to (m_ϵ) and (\tilde{m}_ϵ).